These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 1785871)

  • 21. Activation of Na-Ca exchange current by photolysis of "caged calcium".
    Niggli E; Lederer WJ
    Biophys J; 1993 Aug; 65(2):882-91. PubMed ID: 8218911
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of rapid changes of external Na+ concentration at different moments during the action potential in guinea-pig myocytes.
    Le Guennec JV; Noble D
    J Physiol; 1994 Aug; 478 Pt 3(Pt 3):493-504. PubMed ID: 7965859
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sarcoplasmic reticulum and Na+/Ca2+ exchanger function during early and late relaxation in ventricular myocytes.
    Yao A; Matsui H; Spitzer KW; Bridge JH; Barry WH
    Am J Physiol; 1997 Dec; 273(6):H2765-73. PubMed ID: 9435613
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sodium/calcium exchanger in heart muscle: molecular biology, cellular function, and its special role in excitation-contraction coupling.
    Schulze D; Kofuji P; Hadley R; Kirby MS; Kieval RS; Doering A; Niggli E; Lederer WJ
    Cardiovasc Res; 1993 Oct; 27(10):1726-34. PubMed ID: 8275517
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction of the Na+-K+ pump and Na+-Ca2+ exchange via [Na+]i in a restricted space of guinea-pig ventricular cells.
    Fujioka Y; Matsuoka S; Ban T; Noma A
    J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):457-70. PubMed ID: 9575295
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Charge movement during Na+ translocation by native and cloned cardiac Na+/Ca2+ exchanger.
    Hilgemann DW; Nicoll DA; Philipson KD
    Nature; 1991 Aug; 352(6337):715-8. PubMed ID: 1876186
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The contribution of Na-Ca exchange to relaxation in mammalian cardiac muscle.
    O'Neill SC; Valdeolmillos M; Lamont C; Donoso P; Eisner DA
    Ann N Y Acad Sci; 1991; 639():444-52. PubMed ID: 1785867
    [No Abstract]   [Full Text] [Related]  

  • 28. Voltage-dependent block of the Na-Ca exchanger in heart muscle examined using giant excised patches from guinea pig cardiac myocytes.
    Doering AE; Lederer WJ
    Ann N Y Acad Sci; 1991; 639():172-6. PubMed ID: 1785842
    [No Abstract]   [Full Text] [Related]  

  • 29. Studies of the sodium-calcium exchanger in bull-frog atrial myocytes.
    Campbell DL; Giles WR; Robinson K; Shibata EF
    J Physiol; 1988 Sep; 403():317-40. PubMed ID: 2855344
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Voltage and Ca(2+) dependence of pre-steady-state currents of the Na-Ca exchanger generated by Ca(2+) concentration jumps.
    Kappl M; Nagel G; Hartung K
    Biophys J; 2001 Nov; 81(5):2628-38. PubMed ID: 11606276
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low sodium inotropy is accompanied by diastolic Ca2+ gain and systolic loss in isolated guinea-pig ventricular myocytes.
    Meme W; O'Neill S; Eisner D
    J Physiol; 2001 Feb; 530(Pt 3):487-95. PubMed ID: 11158278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relaxation in ferret ventricular myocytes: unusual interplay among calcium transport systems.
    Bassani RA; Bassani JW; Bers DM
    J Physiol; 1994 Apr; 476(2):295-308. PubMed ID: 8046644
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strontium-induced creep currents associated with tonic contractions in cardiac myocytes isolated from guinea-pigs.
    Niggli E
    J Physiol; 1989 Jul; 414():549-68. PubMed ID: 2607441
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cross-signaling between L-type Ca2+ channels and ryanodine receptors in rat ventricular myocytes.
    Adachi-Akahane S; Cleemann L; Morad M
    J Gen Physiol; 1996 Nov; 108(5):435-54. PubMed ID: 8923268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes in extracellular K+ concentration modulate contractility of rat and rabbit cardiac myocytes via the inward rectifier K+ current IK1.
    Bouchard R; Clark RB; Juhasz AE; Giles WR
    J Physiol; 2004 May; 556(Pt 3):773-90. PubMed ID: 14990678
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of sodium-calcium exchange in intact myocytes by ATP and calcium.
    Haworth RA; Goknur AB
    Ann N Y Acad Sci; 1996 Apr; 779():464-79. PubMed ID: 8659863
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Slow inward tail currents in rabbit cardiac cells.
    Giles W; Shimoni Y
    J Physiol; 1989 Oct; 417():447-63. PubMed ID: 2621605
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intracellular calcium and electrical restitution in mammalian cardiac cells.
    Szigligeti P; Bányász T; Magyar J; Szigeti G; Papp Z; Varró A; Nánási PP
    Acta Physiol Scand; 1998 Jun; 163(2):139-47. PubMed ID: 9648632
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetics, stoichiometry and role of the Na-Ca exchange mechanism in isolated cardiac myocytes.
    Crespo LM; Grantham CJ; Cannell MB
    Nature; 1990 Jun; 345(6276):618-21. PubMed ID: 2348872
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of sodium-calcium exchange during the cardiac action potential.
    Noble D; Noble SJ; Bett GC; Earm YE; Ho WK; So IK
    Ann N Y Acad Sci; 1991; 639():334-53. PubMed ID: 1785860
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.