These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 1785891)

  • 1. Norepinephrine and catecholamine release from peripheral sympathetic nerves and chromaffin cells maintained in primary tissue culture. The role of sodium-calcium exchange.
    Török TL
    Ann N Y Acad Sci; 1991; 639():631-41. PubMed ID: 1785891
    [No Abstract]   [Full Text] [Related]  

  • 2. Sodium-azide-evoked noradrenaline and catecholamine release from peripheral sympathetic nerves and chromaffin cells.
    Török TL; Pauló T; Tóth PT; Azzidani AM; Powis DA; Magyar K
    Gen Pharmacol; 1989; 20(2):143-9. PubMed ID: 2541042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catecholamine release from bovine chromaffin cells: the role of sodium-calcium exchange in ouabain-evoked release.
    Török TL; Powis DA
    Exp Physiol; 1990 Jul; 75(4):573-86. PubMed ID: 2171585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual effect of digitalis glycosides on norepinephrine release from human atrial tissue and bovine adrenal chromaffin cells: differential dependence on [Na+]i and [Ca2+]i.
    Haass M; Serf C; Gerber SH; Krüger C; Haunstetter A; Vahl CF; Nobiling R; Kübler W
    J Mol Cell Cardiol; 1997 Jun; 29(6):1615-27. PubMed ID: 9220347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Agents that promote protein phosphorylation increase catecholamine secretion and inhibit the activity of the Na(+)-Ca2+ exchanger in bovine chromaffin cells.
    Lin LF; Kao LS; Westhead EW
    Ann N Y Acad Sci; 1996 Apr; 779():395-6. PubMed ID: 8659853
    [No Abstract]   [Full Text] [Related]  

  • 6. Presynaptic alpha2-receptors regulate reverse Na+/Ca2+-exchange and transmitter release in Na+-loaded peripheral sympathetic nerves.
    Török TL; Nagykáldi Z; Sáska Z; Kovács T; Nada SA; Zilliikens S; Magyar K; Sylvester Vizi E
    Neurochem Int; 2004 Oct; 45(5):699-711. PubMed ID: 15234113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of dopamine receptor agonists and antagonists on catecholamine release in bovine chromaffin cells.
    Huettl P; Gerhardt GA; Browning MD; Masserano JM
    J Pharmacol Exp Ther; 1991 May; 257(2):567-74. PubMed ID: 1674528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possible occurrence of Na+-dependent Ca2+ influx mechanism in isolated bovine chromaffin cells.
    Sorimachi M; Nishimura S; Yamagami K
    Brain Res; 1981 Mar; 208(2):442-6. PubMed ID: 6260293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the mechanism of scorpion toxin-induced release of norepinephrine from peripheral adrenergic neurons.
    Moss J; Thoa NB; Kopin IJ
    J Pharmacol Exp Ther; 1974 Jul; 190(1):39-48. PubMed ID: 4847312
    [No Abstract]   [Full Text] [Related]  

  • 10. Phenylethanolamine-N-methyl transferase (PNMT) activity and catecholamine content in chromaffin tissue and sympathetic neurons in the cod, Gadus morhua.
    Abrahamsson T; Nilsson S
    Acta Physiol Scand; 1976 Jan; 96(1):94-9. PubMed ID: 1251750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Catecholamines of the blood vessels of Rana temporaria frogs].
    Leont'eva GR; Prozorovskaia MP; Govyrin VA
    Zh Evol Biokhim Fiziol; 1978; 14(2):161-5. PubMed ID: 306729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulation of catecholamine secretion from cultured chromaffin cells by an ionophore-mediated rise in intracellular sodium.
    Suchard SJ; Lattanzio FA; Rubin RW; Pressman BC
    J Cell Biol; 1982 Sep; 94(3):531-9. PubMed ID: 7130269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromaffin vesicle function in intact cells.
    Kirshner N; Corcoran JJ; Caughey B; Korner M
    Ann N Y Acad Sci; 1987; 493():207-19. PubMed ID: 3473962
    [No Abstract]   [Full Text] [Related]  

  • 14. Pathophysiological aspects of catecholamine production.
    Von Euler US
    Clin Chem; 1972 Dec; 18(12):1445-8. PubMed ID: 4565399
    [No Abstract]   [Full Text] [Related]  

  • 15. Differential control of adrenal and sympathetic catecholamine release by alpha 2-adrenoceptor subtypes.
    Brede M; Nagy G; Philipp M; Sorensen JB; Lohse MJ; Hein L
    Mol Endocrinol; 2003 Aug; 17(8):1640-6. PubMed ID: 12764077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Releasing effect of calcium and phosphate on catecholamines, ATP, and protein from chromaffin cell granules.
    Lishajko F
    Acta Physiol Scand; 1970 Aug; 79(4):575-84. PubMed ID: 4319536
    [No Abstract]   [Full Text] [Related]  

  • 17. Inhibition by amiloride of ouabain-evoked catecholamine secretion from cultured adrenal chromaffin cells: evidence for its blocking action on interaction between ouabain and Na+/K(+)-pump.
    Morita K; Azuma M; Hamano S; Oka M; Teraoka K
    J Pharmacol Exp Ther; 1992 Sep; 262(3):1209-13. PubMed ID: 1326628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of nicardipine and other Ca2+-antagonists on catecholamine transport into chromaffin granule membrane vesicles.
    Tachikawa E; Takahashi S; Shimizu C; Ohtsubo N; Kashimoto T; Takahashi E
    Res Commun Chem Pathol Pharmacol; 1984 Aug; 45(2):305-8. PubMed ID: 6484315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling of H+ gradients to catecholamine transport in chromaffin granules.
    Johnson RG; Carty SE; Scarpa A
    Ann N Y Acad Sci; 1985; 456():254-67. PubMed ID: 2868684
    [No Abstract]   [Full Text] [Related]  

  • 20. The effects of neosurugatoxin on evoked catecholamine secretion from bovine adrenal chromaffin cells.
    Bourke JE; Bunn SJ; Marley PD; Livett BG
    Br J Pharmacol; 1988 Feb; 93(2):275-80. PubMed ID: 2896033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.