These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 1785934)
21. Heterotrophic activities of bacterioneuston and bacterioplankton. Dietz AS; Albright LJ; Tuominen T Can J Microbiol; 1976 Dec; 22(12):1699-709. PubMed ID: 1009500 [TBL] [Abstract][Full Text] [Related]
22. Effect of chemical water pollution on the physiological activity of microorganisms. Daubner I; Tóth D; Talaeva JG; Bagdasarjan GA; Zacharkina AN J Hyg Epidemiol Microbiol Immunol; 1981; 25(3):286-92. PubMed ID: 6271868 [TBL] [Abstract][Full Text] [Related]
23. Antimicrobial properties of highly fluorinated bis-ammonium salts. Massi L; Guittard F; Géribaldi S; Levy R; Duccini Y Int J Antimicrob Agents; 2003 Jan; 21(1):20-6. PubMed ID: 12507834 [TBL] [Abstract][Full Text] [Related]
24. Inhibition of growth and photosynthesis of selected green microalgae as tools to evaluate toxicity of dodecylethyldimethyl-ammonium bromide. Sánchez-Fortún S; Marvá F; D'ors A; Costas E Ecotoxicology; 2008 May; 17(4):229-34. PubMed ID: 18188698 [TBL] [Abstract][Full Text] [Related]
25. Environmental impacts of diesel fuel on bacteria and phytoplankton in a tropical estuary assessed using in situ mesocosms. Nayar S; Goh BP; Chou LM Ecotoxicology; 2005 Apr; 14(3):397-412. PubMed ID: 15943112 [TBL] [Abstract][Full Text] [Related]
26. Comparison of methods to measure acute metal and organometal toxicity to natural aquatic microbial communities. Jonas RB; Gilmour CC; Stoner DL; Weir MM; Tuttle JH Appl Environ Microbiol; 1984 May; 47(5):1005-11. PubMed ID: 6146291 [TBL] [Abstract][Full Text] [Related]
27. Incidence of class 1 integrons in a quaternary ammonium compound-polluted environment. Gaze WH; Abdouslam N; Hawkey PM; Wellington EM Antimicrob Agents Chemother; 2005 May; 49(5):1802-7. PubMed ID: 15855499 [TBL] [Abstract][Full Text] [Related]
28. Impact of solid waste disposal on nutrient dynamics in a sandy catchment. Canton M; Anschutz P; Naudet V; Molnar N; Mouret A; Franceschi M; Naessens F; Poirier D J Contam Hydrol; 2010 Jul; 116(1-4):1-15. PubMed ID: 20658756 [TBL] [Abstract][Full Text] [Related]
29. Influence of methylheptenone and related phytoplankton norcarotenoids on heterotrophic aquatic bacteria. Reichardt W Can J Microbiol; 1981 Jan; 27(1):144-7. PubMed ID: 7214229 [TBL] [Abstract][Full Text] [Related]
30. Glyphosate input modifies microbial community structure in clear and turbid freshwater systems. Pizarro H; Vera MS; Vinocur A; Pérez G; Ferraro M; Menéndez Helman RJ; Dos Santos Afonso M Environ Sci Pollut Res Int; 2016 Mar; 23(6):5143-53. PubMed ID: 26552793 [TBL] [Abstract][Full Text] [Related]
31. Chemical and microbial hypotheses explaining the effect of wastewater treatment plant discharges on the nitrifying communities in freshwater sediment. Féray C; Montuelle B Chemosphere; 2003 Feb; 50(7):919-28. PubMed ID: 12504130 [TBL] [Abstract][Full Text] [Related]
32. Polychlorinated biphenyls may alter marine trophic pathways by reducing phytoplankton size and production. O'Connors HB; Wurster CF; Powers CD; Biggs DC; Rowland RG Science; 1978 Aug; 201(4357):737-9. PubMed ID: 97784 [TBL] [Abstract][Full Text] [Related]
33. [Effect of mineral suspended matter on productive characteristics of bacterioplankton and phytoplankton]. Aponasenko AD; Shchur LA Mikrobiologiia; 2009; 78(2):275-80. PubMed ID: 19449743 [No Abstract] [Full Text] [Related]
34. Effect of copper on the photochemical efficiency, growth, and chlorophyll a biomass of natural phytoplankton assemblages. Pérez P; Estévez-Blanco P; Beiras R; Fernández E Environ Toxicol Chem; 2006 Jan; 25(1):137-43. PubMed ID: 16494234 [TBL] [Abstract][Full Text] [Related]
35. [Effect of tributyl tin chloride on the change in oxidation-reduction potential of the environment in the growth of the river microflora]. Filenko OF; Balabanova TS Nauchnye Doki Vyss Shkoly Biol Nauki; 1978; (7):114-7. PubMed ID: 698316 [No Abstract] [Full Text] [Related]
36. Relationship of bacterioplankton production with primary production and respiration in a shallow estuarine system (Ria de Aveiro, NW Portugal). Almeida MA; Cunha MA; Alcântara F Microbiol Res; 2005; 160(3):315-28. PubMed ID: 16035244 [TBL] [Abstract][Full Text] [Related]
37. Dissolved primary production and the strength of phytoplankton- bacterioplankton coupling in contrasting marine regions. Morán XA; Estrada M; Gasol JM; Pedrós-Alió C Microb Ecol; 2002 Oct; 44(3):217-23. PubMed ID: 12209254 [TBL] [Abstract][Full Text] [Related]
38. Water quality modeling of a prairie river-lake system. Hosseini N; Akomeah E; Davis JM; Baulch H; Lindenschmidt KE Environ Sci Pollut Res Int; 2018 Nov; 25(31):31190-31204. PubMed ID: 30191525 [TBL] [Abstract][Full Text] [Related]
39. [The rate of growth and the production of bacterioplankton in the Volga]. Tarasova TN Mikrobiologiia; 1976; 45(6):1082-6. PubMed ID: 138069 [TBL] [Abstract][Full Text] [Related]
40. Imbalance between phytoplankton production and bacterial carbon demand in relation to mucilage formation in the Northern Adriatic Sea. Pugnetti A; Armeni M; Camatti E; Crevatin E; Dell'Anno A; Del Negro P; Milandri A; Socal G; Fonda Umani S; Danovaro R Sci Total Environ; 2005 Dec; 353(1-3):162-77. PubMed ID: 16229876 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]