These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 1786647)

  • 21. Olfactory associative conditioning in infant rats with brain stimulation as reward. I. Neurobehavioral consequences.
    Wilson DA; Sullivan RM
    Brain Res Dev Brain Res; 1990 May; 53(2):215-21. PubMed ID: 2357795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The response of newly born mice to odors of murine colostrum and milk: unconditionally attractive, conditionally discriminated.
    Al Aïn S; Mingioni M; Patris B; Schaal B
    Dev Psychobiol; 2014 Sep; 56(6):1365-76. PubMed ID: 24798460
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Discrimination among odorants by single neurons of the rat olfactory bulb.
    Wellis DP; Scott JW; Harrison TA
    J Neurophysiol; 1989 Jun; 61(6):1161-77. PubMed ID: 2746317
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactions between perinatal and neonatal associative learning defined by contiguous olfactory and tactile stimulation.
    Domínguez HD; López MF; Molina JC
    Neurobiol Learn Mem; 1999 May; 71(3):272-88. PubMed ID: 10196106
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Non-nutritive, thermotactile cues induce odor preference in infant mice (Mus musculus).
    Meyer PM; Alberts JR
    J Comp Psychol; 2016 Nov; 130(4):369-379. PubMed ID: 27599356
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Orbital cortex neuronal responses during an odor-based conditioned associative task in rats.
    Yonemori M; Nishijo H; Uwano T; Tamura R; Furuta I; Kawasaki M; Takashima Y; Ono T
    Neuroscience; 2000; 95(3):691-703. PubMed ID: 10670436
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual circuitry for odor-shock conditioning during infancy: corticosterone switches between fear and attraction via amygdala.
    Moriceau S; Wilson DA; Levine S; Sullivan RM
    J Neurosci; 2006 Jun; 26(25):6737-48. PubMed ID: 16793881
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prenatal stress produces sex differences in nest odor preference.
    de Souza MA; Szawka RE; Centenaro LA; Diehl LA; Lucion AB
    Physiol Behav; 2012 Feb; 105(3):850-5. PubMed ID: 22037198
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Odor familiarity alters mitral cell response in the olfactory bulb of neonatal rats.
    Wilson DA; Sullivan RM; Leon M
    Brain Res; 1985 Oct; 354(2):314-7. PubMed ID: 4052822
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of Odor Hedonics: Experience-Dependent Ontogeny of Circuits Supporting Maternal and Predator Odor Responses in Rats.
    Perry RE; Al Aïn S; Raineki C; Sullivan RM; Wilson DA
    J Neurosci; 2016 Jun; 36(25):6634-50. PubMed ID: 27335397
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Maternal and littermate deprivation disrupts maternal behavior and social-learning of food preference in adulthood: tactile stimulation, nest odor, and social rearing prevent these effects.
    Melo AI; Lovic V; Gonzalez A; Madden M; Sinopoli K; Fleming AS
    Dev Psychobiol; 2006 Apr; 48(3):209-19. PubMed ID: 16568415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of preweaning exposure to novel maternal odors on maternal responsiveness and selectivity in adulthood.
    Shah A; Oxley G; Lovic V; Fleming AS
    Dev Psychobiol; 2002 Nov; 41(3):187-96. PubMed ID: 12325133
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dissociation of behavioral and neural correlates of early associative learning.
    Sullivan RM; Wilson DA
    Dev Psychobiol; 1995 May; 28(4):213-9. PubMed ID: 7621984
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development switch in neural circuitry underlying odor-malaise learning.
    Shionoya K; Moriceau S; Lunday L; Miner C; Roth TL; Sullivan RM
    Learn Mem; 2006; 13(6):801-8. PubMed ID: 17101877
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recognition of propionic acid vapor after removal of the olfactory bulb area associated with high 2-DG uptake.
    Lu XC; Slotnick BM
    Brain Res; 1994 Mar; 639(1):26-32. PubMed ID: 8180835
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gabaergic control of olfactory learning in young rats.
    Okutani F; Yagi F; Kaba H
    Neuroscience; 1999; 93(4):1297-300. PubMed ID: 10501453
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ontogenesis of the functional activity of rat olfactory bulb: autoradiographic study with the 2-deoxyglucose method.
    Astic L; Saucier D
    Brain Res; 1981 Sep; 254(2):243-56. PubMed ID: 7272779
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Maternal care can rapidly induce an odor-guided huddling preference in rat pups.
    Kojima S; Alberts JR
    Dev Psychobiol; 2009 Jan; 51(1):95-105. PubMed ID: 18942053
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced neural response to familiar olfactory cues.
    Coopersmith R; Leon M
    Science; 1984 Aug; 225(4664):849-51. PubMed ID: 6474157
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of olfactory bulb norepinephrine in early olfactory learning.
    Sullivan RM; Zyzak DR; Skierkowski P; Wilson DA
    Brain Res Dev Brain Res; 1992 Dec; 70(2):279-82. PubMed ID: 1477962
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.