BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 17867652)

  • 1. Design and synthesis of single-nanoparticle optical biosensors for imaging and characterization of single receptor molecules on single living cells.
    Huang T; Nallathamby PD; Gillet D; Xu XH
    Anal Chem; 2007 Oct; 79(20):7708-18. PubMed ID: 17867652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photostable single-molecule nanoparticle optical biosensors for real-time sensing of single cytokine molecules and their binding reactions.
    Huang T; Nallathamby PD; Xu XH
    J Am Chem Soc; 2008 Dec; 130(50):17095-105. PubMed ID: 19053435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Far-field photostable optical nanoscopy (PHOTON) for real-time super-resolution single-molecular imaging of signaling pathways of single live cells.
    Huang T; Browning LM; Xu XH
    Nanoscale; 2012 Apr; 4(9):2797-812. PubMed ID: 22331098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding kinetics of biomolecule interaction at ultralow concentrations based on gold nanoparticle enhancement.
    Su LC; Chang YF; Chou C; Ho JA; Li YC; Chou LD; Lee CC
    Anal Chem; 2011 May; 83(9):3290-6. PubMed ID: 21466206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using a fiber optic particle plasmon resonance biosensor to determine kinetic constants of antigen-antibody binding reaction.
    Chang TC; Wu CC; Wang SC; Chau LK; Hsieh WH
    Anal Chem; 2013 Jan; 85(1):245-50. PubMed ID: 23186304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles.
    Lepinay S; Staff A; Ianoul A; Albert J
    Biosens Bioelectron; 2014 Feb; 52():337-44. PubMed ID: 24080213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosensors elaborated on gold nanoparticles, a PM-IRRAS characterisation of the IgG binding efficiency.
    Morel AL; Boujday S; Méthivier C; Krafft JM; Pradier CM
    Talanta; 2011 Jul; 85(1):35-42. PubMed ID: 21645666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study of Ag and Au nanoparticles biosensors based on surface plasmon resonance phenomenon.
    Lismont M; Dreesen L
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1437-42. PubMed ID: 24364943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wide dynamic range sensing with single quantum dot biosensors.
    Opperwall SR; Divakaran A; Porter EG; Christians JA; Denhartigh AJ; Benson DE
    ACS Nano; 2012 Sep; 6(9):8078-86. PubMed ID: 22924857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unimolecular, soluble semiconductor nanoparticle-based biosensors for thrombin using charge/electron transfer.
    Swain MD; Octain J; Benson DE
    Bioconjug Chem; 2008 Dec; 19(12):2520-6. PubMed ID: 19053236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Content Imaging and Gene Expression Approaches To Unravel the Effect of Surface Functionality on Cellular Interactions of Silver Nanoparticles.
    Manshian BB; Pfeiffer C; Pelaz B; Heimerl T; Gallego M; Möller M; del Pino P; Himmelreich U; Parak WJ; Soenen SJ
    ACS Nano; 2015 Oct; 9(10):10431-44. PubMed ID: 26327399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advancements in optical DNA biosensors: exploiting the plasmonic effects of metal nanoparticles.
    Peng HI; Miller BL
    Analyst; 2011 Feb; 136(3):436-47. PubMed ID: 21049107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silver nanoparticles on a plastic platform for localized surface plasmon resonance biosensing.
    Fan M; Thompson M; Andrade ML; Brolo AG
    Anal Chem; 2010 Aug; 82(15):6350-2. PubMed ID: 20597465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates.
    Chiu CS; Gwo S
    Anal Chem; 2008 May; 80(9):3318-26. PubMed ID: 18363384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rapid readout for many single plasmonic nanoparticles using dark-field microscopy and digital color analysis.
    Sriram M; Markhali BP; Nicovich PR; Bennett DT; Reece PJ; Brynn Hibbert D; Tilley RD; Gaus K; Vivekchand SRC; Gooding JJ
    Biosens Bioelectron; 2018 Oct; 117():530-536. PubMed ID: 29982124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative measurement of binding kinetics in sandwich assay using a fluorescence detection fiber-optic biosensor.
    Lin CH; Chen HY; Yu CJ; Lu PL; Hsieh CH; Hsieh BY; Chang YF; Chou C
    Anal Biochem; 2009 Feb; 385(2):224-8. PubMed ID: 19041630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label free optical sensor for Avidin based on single gold nanoparticles functionalized with aptamers.
    Hernandez FJ; Dondapati SK; Ozalp VC; Pinto A; O'Sullivan CK; Klar TA; Katakis I
    J Biophotonics; 2009 Apr; 2(4):227-31. PubMed ID: 19367590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How antibody surface coverage on nanoparticles determines the activity and kinetics of antigen capturing for biosensing.
    Saha B; Evers TH; Prins MW
    Anal Chem; 2014 Aug; 86(16):8158-66. PubMed ID: 25048623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanoparticle-mediated signal amplification of liquid crystal biosensors for dopamine.
    Nandi R; Loitongbam L; De J; Jain V; Pal SK
    Analyst; 2019 Feb; 144(4):1110-1114. PubMed ID: 30687868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of the cytoskeleton binding drugs nocodazole and taxol with a mammalian cell quartz crystal microbalance biosensor: different dynamic responses and energy dissipation effects.
    Marx KA; Zhou T; Montrone A; McIntosh D; Braunhut SJ
    Anal Biochem; 2007 Feb; 361(1):77-92. PubMed ID: 17161375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.