These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 1786770)

  • 21. [The generalized accumulation of stress proteins during body adaptation to stress exposures].
    Meerson FZ; Malyshev IIu; Zamotrinskiĭ AV
    Biull Eksp Biol Med; 1993 Sep; 116(9):231-3. PubMed ID: 8117985
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Capillary supply and utilization of intracellular oxygen in the left ventricular myocardium from rats adapted to high altitude.
    Moravec J; Cluzeaud F; Rakusan K; Turek Z
    Adv Exp Med Biol; 1983; 159():243-52. PubMed ID: 6637617
    [No Abstract]   [Full Text] [Related]  

  • 23. [Effect of adaptation to high-altitude hypoxia on the microcirculation of rats in early burn shock].
    Shtykhno IuM; Atadzhanova ZR
    Patol Fiziol Eksp Ter; 1985; (2):30-2. PubMed ID: 4000722
    [No Abstract]   [Full Text] [Related]  

  • 24. [Isoform pattern of inducible HSP 70 in the rat myocardium after heat shock].
    Zamotrinskiĭ AV; Malyshev IIu; Meerson FZ
    Biull Eksp Biol Med; 1992 Jun; 113(6):586-7. PubMed ID: 1446022
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Effect of adaptation to medium altitude (1600 m) on the stability of parameters of lipid metabolism of the myocardium during stress].
    Kostiuchenko LS
    Patol Fiziol Eksp Ter; 1996; (2):18-20. PubMed ID: 8754138
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protective effects of intermittent hypoxic adaptation on myocardium and its mechanisms.
    Zhuang J; Zhou Z
    Biol Signals Recept; 1999; 8(4-5):316-22. PubMed ID: 10494017
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Effect of a Rhodiolae rosea extract on the level of inducible HSP-70 in the myocardium under stress].
    Lishmanov IuB; Krylatov AV; Maslov LN; Naryzhnaia NV; Zamotrinskiĭ AV
    Biull Eksp Biol Med; 1996 Mar; 121(3):256-8. PubMed ID: 8688520
    [No Abstract]   [Full Text] [Related]  

  • 28. [Increase of calcium-dependent activity of phospholipase C in the myocardium in adaptation of animals to short-term stress effects].
    Meerson FZ; Kopylov IuN; Avdonin PV
    Biull Eksp Biol Med; 1992 Feb; 113(2):130-2. PubMed ID: 1319232
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Effects of adaptation to stress exposure and periodic hypoxia on bioelectric activity of cardiomyocytes of isolated heart in ischemia and reperfusion].
    Meerson FZ; Vovk VI
    Biull Eksp Biol Med; 1991 Dec; 112(12):573-5. PubMed ID: 1777611
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [The protective action of different types and regimens of adaptation to hypoxia on the development of stress-induced lesions in KM strain (Krushinskiĭ-Molodkina) rats].
    Krushinskiĭ AL; Riasina TV; Koshelev VB; Sotskaia MN; Bebinov EM
    Fiziol Zh SSSR Im I M Sechenova; 1989 Nov; 75(11):1576-84. PubMed ID: 2628014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Structural changes in the rat myocardium in the process of adaptation to high-altitude hypoxia].
    Kononova VA
    Biull Eksp Biol Med; 1979 Oct; 88(10):497-500. PubMed ID: 159083
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [The effect of preliminary training to altitude hypoxia on the contractile function of the heart in acute strain].
    Markovskaia GI
    Biull Eksp Biol Med; 1970 Jun; 69(6):23-6. PubMed ID: 5471714
    [No Abstract]   [Full Text] [Related]  

  • 33. [Accumulation of 99m-technetium-pyrophosphate and the level of cyclic nucleotides in the myocardium during its adaptation to stress damage].
    Maslova LV; Lishmanov IuB
    Patol Fiziol Eksp Ter; 1989; (3):53-5. PubMed ID: 2552383
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Mechanism of body adaptation to altitude hypoxia and the problem of prophylaxis].
    Meerson FZ
    Patol Fiziol Eksp Ter; 1973; 17(3):7-15. PubMed ID: 4127376
    [No Abstract]   [Full Text] [Related]  

  • 35. [Influence of high altitude adaptation on the metabolic response following administration of adrenocorticotropic hormone and after hypoxia load in the altitude of 6000 m above sea level].
    Baláz V; Slavkovský M; Balázová E
    Fysiatr Revmatol Vestn; 1974 Jun; 52(3):157-64. PubMed ID: 4365875
    [No Abstract]   [Full Text] [Related]  

  • 36. [Lipid peroxidation in burn shock in rats adapted to high-altitude hypoxia].
    Atadzhanova ZR; Borisov SE; Udovichenko VI
    Patol Fiziol Eksp Ter; 1986; (3):42-4. PubMed ID: 3748623
    [No Abstract]   [Full Text] [Related]  

  • 37. [Growth of cardiac muscle cells during rat adaptation to altitude hypoxia].
    Aref'eva AM; Durova SI; Meerson FZ; Brodskiĭ VIa
    Tsitologiia; 1982 Dec; 24(12):1435-9. PubMed ID: 6218671
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Stressor lesions of the cells of the hepatic macrophage system and their prevention by adaptation to periodic hypoxia].
    Nikonorov AA; Smagin GN; Frolov BA; Meerson FZ
    Biull Eksp Biol Med; 1990 Aug; 110(8):140-1. PubMed ID: 2291956
    [No Abstract]   [Full Text] [Related]  

  • 39. [The antimutagenic effect of adaptation to stress].
    Meerson FZ; Kulakova AV; Saltykova VA
    Biull Eksp Biol Med; 1993 Sep; 116(9):292-5. PubMed ID: 8118005
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heat-shock proteins, stress, and the heart.
    Knowlton AA
    Ann N Y Acad Sci; 1994 Jun; 723():128-37. PubMed ID: 8030860
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.