These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 1786770)

  • 41. [Functional and metabolic changes in the heart during the adaptation of the body to high altitude hypoxia].
    Varosian MA
    Kosm Biol Aviakosm Med; 1989; 23(5):68-70. PubMed ID: 2480474
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Dynamics of protein synthesis in the contractile myocardium and smooth muscles of the intramural branches of the coronary arteries in adaptation to continuous and interrupted hypoxia].
    Ainokenova RR; Kaufman OIa
    Kardiologiia; 1973 Apr; 13(4):128-31. PubMed ID: 4711303
    [No Abstract]   [Full Text] [Related]  

  • 43. [Comparative assessment of the effect of adaptation to stress exposure and high altitude hypoxia on heart resistance to reperfusion injury after total ischemia].
    Meerson FZ; Malyshev IIu; Vovk VI
    Biull Eksp Biol Med; 1991 Jul; 112(7):18-20. PubMed ID: 1793839
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Comparative evaluation of a protective effect of adaptation to periodic hypoxia and stress in myocardial infarction].
    Meerson FZ; Shneĭder AB; Ustinova EE
    Kardiologiia; 1990 Sep; 30(9):67-9. PubMed ID: 2273743
    [No Abstract]   [Full Text] [Related]  

  • 45. [Effect of nuredal on frequency of cardiac contractions, catecholamines and tolerance of rats to pressure chamber anoxia under conditions of varied altitude].
    Daniiarov SB; Zarif'ian AG
    Sov Zdravookhr Kirg; 1974; 1(0):3-10. PubMed ID: 4407600
    [No Abstract]   [Full Text] [Related]  

  • 46. Comparison of cardiopulmonary responses of male and female rats to intermittent high altitude hypoxia.
    Ostádal B; Procházka J; Pelouch V; Urbanová D; Widimský J
    Physiol Bohemoslov; 1984; 33(2):129-38. PubMed ID: 6233623
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [The role of HSP70 and Ca(2+)-pump from the myocardial sarcoplasmic reticulum in cardioprotective effects during adaptation to physical load in rats].
    Pshennikova MG; Prodius PA; Sazontova TG; Golantsova NE; Malyshev IIu
    Ross Fiziol Zh Im I M Sechenova; 1998 Nov; 84(11):1214-22. PubMed ID: 10204165
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Effects of adaptation to periodic and continuous hypoxia in disorders of electrical stability of the heart in postinfarction cardiosclerosis].
    Ustinova EE; Saltykova VA; Didenko VV; Beloshitskiĭ PV; Meerson FZ
    Biull Eksp Biol Med; 1988 May; 105(5):533-5. PubMed ID: 3382726
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Molecular mechanisms of adaptation to hypoxia at high altitudes].
    Dávila BR
    Arch Inst Biol Andina; 1971; 4(1):1-14. PubMed ID: 5161930
    [No Abstract]   [Full Text] [Related]  

  • 50. [The effect of preliminary adaptation to hypoxia on the concentration of noradrenaline in the myocardium in experimental heart defects in rats].
    Pshennikova MG; Manukhin BN; Meerson FZ
    Fiziol Zh SSSR Im I M Sechenova; 1972 Feb; 58(2):249-54. PubMed ID: 4259762
    [No Abstract]   [Full Text] [Related]  

  • 51. [Toxicity of etmozin under extreme conditions].
    Nanaeva MT; Ivanova AV
    Farmakol Toksikol; 1985; 48(1):60-2. PubMed ID: 3884365
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Heart damage during emotional stress and its prevention by preliminary adaptation to high altitude hypoxia].
    Meerson FZ; Radzievskiĭ SA; Giber LM; Kogan AKh; Rozhitskaia II
    Dokl Akad Nauk SSSR; 1977; 237(4):977-80. PubMed ID: 563319
    [No Abstract]   [Full Text] [Related]  

  • 53. [Protective effect of stress adaptation to damages caused hemorrhagic shock: the role of the antioxidant system].
    Kizichenko NV; Arkhipenko IuV
    Biull Eksp Biol Med; 1998 Sep; 126(9):270-3. PubMed ID: 9805609
    [No Abstract]   [Full Text] [Related]  

  • 54. [Comparative study of lipid peroxidation indicators in the heart, liver and brain of rats with varying resistance to hypoxia].
    Khachatur'ian ML; Gukasov VM; Komarov PG; Pirogova LB; Bilenko MV
    Biull Eksp Biol Med; 1996 Feb; 121(2):138-43. PubMed ID: 9026114
    [No Abstract]   [Full Text] [Related]  

  • 55. [Adaptation of coronary circulation and metabolism of the myocardium to chronic hypoxia of high altitudes].
    Moret P; Covarrubias E; Coudert J
    Arch Mal Coeur Vaiss; 1971 Oct; 64(10):1424-30. PubMed ID: 5001531
    [No Abstract]   [Full Text] [Related]  

  • 56. [Characteristics of the transcription activity of liver nuclear DNA in long-term adaptation to altitude hypoxia].
    Komolova GS; Egorov IA
    Izv Akad Nauk SSSR Biol; 1985; (1):25-30. PubMed ID: 2579992
    [No Abstract]   [Full Text] [Related]  

  • 57. [Functional morphology of myocardial ultrastructure during prolonged adaptation to pressure chamber hypoxia].
    Kononova VA; Vtiurin BV
    Biull Eksp Biol Med; 1980 Nov; 90(11):616-9. PubMed ID: 7448400
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [The effect of adaptation to interrupted normobaric hypoxia on the ultrastructure of pregnant rat cardiomyocytes].
    Lebkova NP; Chizhov AIa; Zeĭtlenko LN
    Biull Eksp Biol Med; 1995 Jun; 119(6):597-602. PubMed ID: 8589382
    [No Abstract]   [Full Text] [Related]  

  • 59. [Adaptation to stress can enhance animal resistance to sublethal hypoxia to a greater extent than adaptation to hypoxia].
    Meerson FZ; Pozharov VP; Miniaĭlenko TD; Golubeva LIu
    Biull Eksp Biol Med; 1993 Dec; 116(12):574-7. PubMed ID: 8123804
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Role of mitochondrial biogenesis in adaptation to altitude hypoxia].
    Meerson FZ; Pomoĭnitskiĭ VD; Iampol'skaia BA
    Dokl Akad Nauk SSSR; 1972 Apr; 203(4):973-6. PubMed ID: 5024697
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.