These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 1786770)

  • 61. [Indicators of lipid peroxidation in organs of rats with varying resistance to hypoxia].
    Khachatur'ian ML; Gukasov VM; Komarov PG; Pirogova LB; Bilenko MV
    Biull Eksp Biol Med; 1996 Jan; 121(1):26-9. PubMed ID: 8679997
    [No Abstract]   [Full Text] [Related]  

  • 62. [Development of increased resistance of Ca-pump of the myocardial sarcoplasmic reticulum during adaptation to stress].
    Sazontova TG; Golantsova NE; Arkhipenko IuV
    Biull Eksp Biol Med; 1997 Mar; 123(3):272-6. PubMed ID: 9162232
    [No Abstract]   [Full Text] [Related]  

  • 63. [Adaptation to hypoxia and contractility of the myocardium].
    Procházka F; Pelouch V; Ostádal B
    Cesk Fysiol; 1973; 22(1):45-50. PubMed ID: 4730909
    [No Abstract]   [Full Text] [Related]  

  • 64. [Effect of prolonged hypokinesia on the rat myocardium].
    Prochazka J; Khavkina IV; Barbashova ZI
    Fiziol Zh SSSR Im I M Sechenova; 1973 Aug; 59(8):1237-41. PubMed ID: 4790407
    [No Abstract]   [Full Text] [Related]  

  • 65. [Dynamics of noradrenaline concentration in rat myocardium during high-altitude hypoxia].
    Pshennikova MG; Manukhin BN
    Dokl Akad Nauk SSSR; 1971; 198(6):1474-7. PubMed ID: 5567837
    [No Abstract]   [Full Text] [Related]  

  • 66. [The role of heat shock proteins in the formation of stress-resistance in various genetic lines of animals].
    Malysheva EV; Zamotrinskiĭ AV; Malyshev IIu
    Biull Eksp Biol Med; 1994 Jul; 118(7):11-3. PubMed ID: 7919260
    [No Abstract]   [Full Text] [Related]  

  • 67. [A comparative analysis of the polypeptide composition of heat shock proteins 70 synthesized in Wistar and August rat myocardium].
    Zamotrinskiĭ AV; Malyshev IIu; Larionov NP
    Biull Eksp Biol Med; 1995 Jul; 120(7):30-2. PubMed ID: 8527774
    [No Abstract]   [Full Text] [Related]  

  • 68. [Activity of neutral peptide hydrolases and oxidative enzymes in the myocardium and blood during hypoxic hypoxia].
    Ivashkevich AA; Man'kovskaia IN; Kurdanova AS
    Ukr Biokhim Zh (1978); 1990; 62(4):55-60. PubMed ID: 2238155
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A cytophotometric and karyometric study of the cardiac muscle cells of young rats exposed to intermittent high altitude hypoxia.
    Arefyeva AM; Mares V; Ostádal B; Brodsky WY
    Physiol Bohemoslov; 1985; 34(1):94-6. PubMed ID: 3158018
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Studies on plasma catecholamine and myocardial adrenergic receptors in two strains of rats with different susceptibilities to chronic hypoxia].
    Liu TN
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 1989 Dec; 11(6):457-9. PubMed ID: 2534586
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [Contractile function and some parameters of energy metabolism of the myocardium in the process of adaptation to the effect of moderate continuous stress].
    Kuznetsov VI; Golubeva LIu; Saltykova VA; Meerson FZ
    Patol Fiziol Eksp Ter; 1991; (2):26-8. PubMed ID: 1881702
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effect of intermittent high altitude hypoxia on the structure and enzymatic activity of cardiac myosin.
    Pelouch V; Ostádal B; Urbanová D; Procházka J; Ressl J; Widimský J
    Physiol Bohemoslov; 1980; 29(4):313-22. PubMed ID: 6448417
    [TBL] [Abstract][Full Text] [Related]  

  • 73. [The influence of training on performance capacity of rats and their resistance to altitude hypoxia and acceleration stress].
    Soltysiak J
    Acta Physiol Pol; 1968; 19(5):703-11. PubMed ID: 5701607
    [No Abstract]   [Full Text] [Related]  

  • 74. [Adaptation to short-term stressor factors increases calcium pump activity in sarcoplasmic reticulum and decreases the rate of its inactivation during autolysis].
    Meerson FZ; Sazontova TG; Arkhipenko IuV
    Vopr Med Khim; 1990; 36(2):55-61. PubMed ID: 2363261
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [Opposite effects on antioxidant enzymes of adaptation to continuous and intermittent hypoxia].
    Meerson FZ; Arkhipenko IVb ; Rozhitskaia II; Didenko VV; Sazontova TG
    Biull Eksp Biol Med; 1992 Jul; 114(7):14-5. PubMed ID: 1421294
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Immediate effects of high altitude hypoxia on myocardial metabolism in man.
    Manchanda SC; Shrivastva LM; Tandon R; Bhatia ML; Sethi PK; Kaushik VS; Roy SB
    Indian Heart J; 1973 Jan; 25(1):25-8. PubMed ID: 4712267
    [No Abstract]   [Full Text] [Related]  

  • 77. Influence of adaptation to altitude hypoxia on the behavior of rats in a conflict situation.
    Meerson FZ; Solomatina ES; Kruglikov RI
    Acta Neurobiol Exp (Wars); 1979; 39(5):327-34. PubMed ID: 539477
    [TBL] [Abstract][Full Text] [Related]  

  • 78. [Inherent efficiency of stress-limiting systems as a factor of the resistance to stress-induced disorders].
    Pshennikova MG
    Usp Fiziol Nauk; 2003; 34(3):55-67. PubMed ID: 12942762
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [The concentration and bisynthesis of ubiquinone-9 in the liver of white rats adapted to altitude hypoxia].
    Fedurov VV
    Biull Eksp Biol Med; 1976 Feb; 81(2):179-81. PubMed ID: 1276410
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The role of short-term hypobaric hypoxia in prevention of disorders of the cerebral circulation in rats during acoustic stress.
    Ryasina TV; Koshelev VB; Krushinsky AL; Lozhnikova SM; Sotskaya MN; Lyudkovskaya IG
    Brain Res; 1988 Nov; 473(1):153-6. PubMed ID: 3208118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.