BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 17867769)

  • 1. Influence of aggregation, defects, and contaminant oxygen on water dissociation at Cu(110) surface: a theoretical study.
    Tang QL; Chen ZX
    J Chem Phys; 2007 Sep; 127(10):104707. PubMed ID: 17867769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational study of H2 dissociation on silver surfaces: the effect of oxygen in the added row structure of Ag110.
    Mohammad AB; Hwa Lim K; Yudanov IV; Neyman KM; Rösch N
    Phys Chem Chem Phys; 2007 Mar; 9(10):1247-54. PubMed ID: 17325771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slab model studies of water adsorption and decomposition on clean and X- (X = C, N and O) contaminated Pd(111) surfaces.
    Cao Y; Chen ZX
    Phys Chem Chem Phys; 2007 Feb; 9(6):739-46. PubMed ID: 17268686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A first-principles density functional study of chlorophenol adsorption on Cu2O(110):CuO.
    Altarawneh M; Radny MW; Smith PV; Mackie JC; Kennedy EM; Dlugogorski BZ; Soon A; Stampfl C
    J Chem Phys; 2009 May; 130(18):184505. PubMed ID: 19449934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of steps on the decomposition of CH3O at PdZn alloy surfaces.
    Chen ZX; Lim KH; Neyman KM; Rösch N
    J Phys Chem B; 2005 Mar; 109(10):4568-74. PubMed ID: 16851534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation.
    Chrétien S; Metiu H
    J Chem Phys; 2008 Aug; 129(7):074705. PubMed ID: 19044790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An embedded cluster study of the formation of water on interstellar dust grains.
    Goumans TP; Catlow CR; Brown WA; Kästner J; Sherwood P
    Phys Chem Chem Phys; 2009 Jul; 11(26):5431-6. PubMed ID: 19551212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface protonation at the rutile (110) interface: explicit incorporation of solvation structure within the refined MUSIC model framework.
    Machesky ML; Predota M; Wesolowski DJ; Vlcek L; Cummings PT; Rosenqvist J; Ridley MK; Kubicki JD; Bandura AV; Kumar N; Sofo JO
    Langmuir; 2008 Nov; 24(21):12331-9. PubMed ID: 18842061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of and effect of coadsorption on water dissociation on an oxygen vacancy of the MgO(100) surface.
    Wang Y; Nguyen HN; Truong TN
    Chemistry; 2006 Jul; 12(22):5859-67. PubMed ID: 16729339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffractive and reactive scattering of H2 from Ru(0001): experimental and theoretical study.
    Nieto P; Farías D; Miranda R; Luppi M; Baerends EJ; Somers MF; van der Niet MJ; Olsen RA; Kroes GJ
    Phys Chem Chem Phys; 2011 May; 13(18):8583-97. PubMed ID: 21487588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption and activation of CO over flat and stepped Co surfaces: a first principles analysis.
    Ge Q; Neurock M
    J Phys Chem B; 2006 Aug; 110(31):15368-80. PubMed ID: 16884257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A first-principles study of molecular oxygen dissociation at an electrode surface: a comparison of potential variation and coadsorption effects.
    Wasileski SA; Janik MJ
    Phys Chem Chem Phys; 2008 Jul; 10(25):3613-27. PubMed ID: 18563222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface composition of materials used as catalysts for methanol steam reforming: a theoretical study.
    Lim KH; Moskaleva LV; Rösch N
    Chemphyschem; 2006 Aug; 7(8):1802-12. PubMed ID: 16807960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the exchange-correlation potential and of surface relaxation on the description of the H(2)O dissociation on Cu(111).
    Fajín JL; Illas F; Gomes JR
    J Chem Phys; 2009 Jun; 130(22):224702. PubMed ID: 19530779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DFT analysis of the reaction paths of formaldehyde decomposition on silver.
    Montoya A; Haynes BS
    J Phys Chem A; 2009 Jul; 113(28):8125-31. PubMed ID: 19586058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microscopic models of PdZn alloy catalysts: structure and reactivity in methanol decomposition.
    Neyman KM; Lim KH; Chen ZX; Moskaleva LV; Bayer A; Reindl A; Borgmann D; Denecke R; Steinrück HP; Rösch N
    Phys Chem Chem Phys; 2007 Jul; 9(27):3470-82. PubMed ID: 17612715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water-enhanced low-temperature CO oxidation and isotope effects on atomic oxygen-covered Au(111).
    Ojifinni RA; Froemming NS; Gong J; Pan M; Kim TS; White JM; Henkelman G; Mullins CB
    J Am Chem Soc; 2008 May; 130(21):6801-12. PubMed ID: 18444649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of water dissociation on Rh(111) and Ni(111) studied with first principles calculations.
    Pozzo M; Carlini G; Rosei R; Alfè D
    J Chem Phys; 2007 Apr; 126(16):164706. PubMed ID: 17477623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemistry of O- and H-containing species on the (001) surface of anatase TiO2: a DFT study.
    Hussain A; Gracia J; Nieuwenhuys BE; Niemantsverdriet JW
    Chemphyschem; 2010 Aug; 11(11):2375-82. PubMed ID: 20575137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water on extended and point defects at MgO surfaces.
    Costa D; Chizallet C; Ealet B; Goniakowski J; Finocchi F
    J Chem Phys; 2006 Aug; 125(5):054702. PubMed ID: 16942236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.