BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 17867801)

  • 1. Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography.
    Kagemann L; Wollstein G; Wojtkowski M; Ishikawa H; Townsend KA; Gabriele ML; Srinivasan VJ; Fujimoto JG; Schuman JS
    J Biomed Opt; 2007; 12(4):041212. PubMed ID: 17867801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography.
    Wang Y; Bower BA; Izatt JA; Tan O; Huang D
    J Biomed Opt; 2007; 12(4):041215. PubMed ID: 17867804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation.
    Bower BA; Zhao M; Zawadzki RJ; Izatt JA
    J Biomed Opt; 2007; 12(4):041214. PubMed ID: 17867803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography.
    Michaely R; Bachmann AH; Villiger ML; Blatter C; Lasser T; Leitgeb RA
    J Biomed Opt; 2007; 12(4):041213. PubMed ID: 17867802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated retinal shadow compensation of optical coherence tomography images.
    Fabritius T; Makita S; Hong Y; Myllylä R; Yasuno Y
    J Biomed Opt; 2009; 14(1):010503. PubMed ID: 19256685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation.
    Tao YK; Zhao M; Izatt JA
    Opt Lett; 2007 Oct; 32(20):2918-20. PubMed ID: 17938652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients.
    Povazay B; Hermann B; Unterhuber A; Hofer B; Sattmann H; Zeiler F; Morgan JE; Falkner-Radler C; Glittenberg C; Blinder S; Drexler W
    J Biomed Opt; 2007; 12(4):041211. PubMed ID: 17867800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional pointwise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging.
    Chen Y; Burnes DL; de Bruin M; Mujat M; de Boer JF
    J Biomed Opt; 2009; 14(2):024016. PubMed ID: 19405746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated segmentation of 3-D spectral OCT retinal blood vessels by neural canal opening false positive suppression.
    Hu Z; Niemeijer M; Abràmoft MD; Lee K; Garvin MK
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):33-40. PubMed ID: 20879380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow velocity estimation by complex ambiguity free joint Spectral and Time domain Optical Coherence Tomography.
    Szkulmowski M; Grulkowski I; Szlag D; Szkulmowska A; Kowalczyk A; Wojtkowski M
    Opt Express; 2009 Aug; 17(16):14281-97. PubMed ID: 19654837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinal blood oxygen saturation mapping by multispectral imaging and morphological angiography.
    Arimoto H; Furukawa H
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1627-30. PubMed ID: 18002284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration.
    Ricco S; Chen M; Ishikawa H; Wollstein G; Schuman J
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):100-7. PubMed ID: 20425976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-speed, high-resolution Fourier-domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region.
    Puvanathasan P; Forbes P; Ren Z; Malchow D; Boyd S; Bizheva K
    Opt Lett; 2008 Nov; 33(21):2479-81. PubMed ID: 18978893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Imaging Blood Flow and Pulsation of Retinal Vessels with Full-Field Swept-Source OCT].
    Spahr H; Hillmann D; Hain C; Pfäffle C; Sudkamp H; Franke G; Koch P; Hüttmann G
    Klin Monbl Augenheilkd; 2016 Dec; 233(12):1324-1330. PubMed ID: 27984838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography.
    Wang Y; Bower BA; Izatt JA; Tan O; Huang D
    J Biomed Opt; 2008; 13(6):064003. PubMed ID: 19123650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motion artefact correction in retinal optical coherence tomography using local symmetry.
    Montuoro A; Wu J; Waldstein S; Gerendas B; Langs G; Simader C; Schmidt-Erfurth U
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):130-7. PubMed ID: 25485371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probabilistic intra-retinal layer segmentation in 3-D OCT images using global shape regularization.
    Rathke F; Schmidt S; Schnörr C
    Med Image Anal; 2014 Jul; 18(5):781-94. PubMed ID: 24835184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo Investigation of Optical Coherence Tomography Retinal Oximetry.
    Chen S; Yi J; Liu W; Backman V; Zhang HF
    IEEE Trans Biomed Eng; 2015 Sep; 62(9):2308-15. PubMed ID: 25955984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of oxygen saturation in small retinal vessels with adaptive optics confocal scanning laser ophthalmoscope.
    Li H; Lu J; Shi G; Zhang Y
    J Biomed Opt; 2011 Nov; 16(11):110504. PubMed ID: 22112100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets.
    Zawadzki RJ; Fuller AR; Wiley DF; Hamann B; Choi SS; Werner JS
    J Biomed Opt; 2007; 12(4):041206. PubMed ID: 17867795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.