BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 17868312)

  • 1. Reduction of ferric green rust by Shewanella putrefaciens.
    Jorand F; Zegeye A; Landry F; Ruby C
    Lett Appl Microbiol; 2007 Nov; 45(5):515-21. PubMed ID: 17868312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetite as a precursor for green rust through the hydrogenotrophic activity of the iron-reducing bacteria Shewanella putrefaciens.
    Etique M; Jorand FP; Ruby C
    Geobiology; 2016 May; 14(3):237-54. PubMed ID: 26715461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shewanella putrefaciens produces an Fe(III)-solubilizing organic ligand during anaerobic respiration on insoluble Fe(III) oxides.
    Taillefert M; Beckler JS; Carey E; Burns JL; Fennessey CM; DiChristina TJ
    J Inorg Biochem; 2007 Nov; 101(11-12):1760-7. PubMed ID: 17765315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial and iron oxide aggregates mediate secondary iron mineral formation: green rust versus magnetite.
    Zegeye A; Mustin C; Jorand F
    Geobiology; 2010 Jun; 8(3):209-22. PubMed ID: 20398066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of bound phosphate on the bioreduction of lepidocrocite (γ-FeOOH) and maghemite (γ-Fe2O3) and formation of secondary minerals.
    O'Loughlin EJ; Boyanov MI; Flynn TM; Gorski CA; Hofmann SM; McCormick ML; Scherer MM; Kemner KM
    Environ Sci Technol; 2013 Aug; 47(16):9157-66. PubMed ID: 23909690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fe(III) reduction activity and cytochrome content of Shewanella putrefaciens grown on ten compounds as sole terminal electron acceptor.
    Blakeney MD; Moulaei T; DiChristina TJ
    Microbiol Res; 2000 Jul; 155(2):87-94. PubMed ID: 10950190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular precipitation of Pb by Shewanella putrefaciens CN32 during the reductive dissolution of Pb-jarosite.
    Smeaton CM; Fryer BJ; Weisener CG
    Environ Sci Technol; 2009 Nov; 43(21):8086-91. PubMed ID: 19924927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioreduction of nitrobenzene, natural organic matter, and hematite by Shewanella putrefaciens CN32.
    Luan F; Burgos WD; Xie L; Zhou Q
    Environ Sci Technol; 2010 Jan; 44(1):184-90. PubMed ID: 19957913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite (gamma-FeOOH) and the formation of secondary mineralization products.
    O'Loughlin EJ; Gorski CA; Scherer MM; Boyanov MI; Kemner KM
    Environ Sci Technol; 2010 Jun; 44(12):4570-6. PubMed ID: 20476735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudo-first-order reaction of chemically and biologically formed green rusts with HgII and C₁₅H₁₅N₃O₂: effects of pH and stabilizing agents (phosphate, silicate, polyacrylic acid, and bacterial cells).
    Remy PP; Etique M; Hazotte AA; Sergent AS; Estrade N; Cloquet C; Hanna K; Jorand FP
    Water Res; 2015 Mar; 70():266-78. PubMed ID: 25543237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria.
    Liu C; Gorby YA; Zachara JM; Fredrickson JK; Brown CF
    Biotechnol Bioeng; 2002 Dec; 80(6):637-49. PubMed ID: 12378605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The roles of natural organic matter in chemical and microbial reduction of ferric iron.
    Chen J; Gu B; Royer RA; Burgos WD
    Sci Total Environ; 2003 May; 307(1-3):167-78. PubMed ID: 12711432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake and release of cerium during Fe-oxide formation and transformation in Fe(II) solutions.
    Nedel S; Dideriksen K; Christiansen BC; Bovet N; Stipp SL
    Environ Sci Technol; 2010 Jun; 44(12):4493-8. PubMed ID: 20496931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular iron minerals in a dissimilatory iron-reducing bacterium.
    Glasauer S; Langley S; Beveridge TJ
    Science; 2002 Jan; 295(5552):117-9. PubMed ID: 11778045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green rust formation during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1.
    Pantke C; Obst M; Benzerara K; Morin G; Ona-Nguema G; Dippon U; Kappler A
    Environ Sci Technol; 2012 Feb; 46(3):1439-46. PubMed ID: 22201257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron(III)-bearing clay minerals enhance bioreduction of nitrobenzene by Shewanella putrefaciens CN32.
    Luan F; Liu Y; Griffin AM; Gorski CA; Burgos WD
    Environ Sci Technol; 2015 Feb; 49(3):1418-26. PubMed ID: 25565314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron(II,III) hydroxycarbonate green rust formation and stabilization from lepidocrocite bioreduction.
    Ona-Nguema G; Abdelmoula M; Jorand F; Benali O; Géhin A; Block JC; Génin JM
    Environ Sci Technol; 2002 Jan; 36(1):16-20. PubMed ID: 11811482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mixed-valence cytoplasmic iron granules are linked to anaerobic respiration.
    Glasauer S; Langley S; Boyanov M; Lai B; Kemner K; Beveridge TJ
    Appl Environ Microbiol; 2007 Feb; 73(3):993-6. PubMed ID: 17142380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of Ag(I), Au(III), Cu(II), and Hg(II) by Fe(II)/Fe(III) hydroxysulfate green rust.
    O'Loughlin EJ; Kelly SD; Kemner KM; Csencsits R; Cook RE
    Chemosphere; 2003 Nov; 53(5):437-46. PubMed ID: 12948527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria.
    Miot J; Benzerara K; Morin G; Bernard S; Beyssac O; Larquet E; Kappler A; Guyot F
    Geobiology; 2009 Jun; 7(3):373-84. PubMed ID: 19573166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.