These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 17868312)

  • 21. Dissimilatory Fe(III) and Mn(IV) reduction by Shewanella putrefaciens requires ferE, a homolog of the pulE (gspE) type II protein secretion gene.
    DiChristina TJ; Moore CM; Haller CA
    J Bacteriol; 2002 Jan; 184(1):142-51. PubMed ID: 11741854
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reductive transformation and mineralization of an azo dye by hydroxysulphate green rust preceding oxidation using H(2)O(2) at neutral pH.
    Kone T; Hanna K; Abdelmoula M; Ruby C; Carteret C
    Chemosphere; 2009 Apr; 75(2):212-9. PubMed ID: 19147177
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Abiotic process for Fe(II) oxidation and green rust mineralization driven by a heterotrophic nitrate reducing bacteria (Klebsiella mobilis).
    Etique M; Jorand FP; Zegeye A; Grégoire B; Despas C; Ruby C
    Environ Sci Technol; 2014 Apr; 48(7):3742-51. PubMed ID: 24605878
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of electron transfer mediators on the bioreduction of lepidocrocite (gamma-FeOOH) by Shewanella putrefaciens CN32.
    O'Loughlin EJ
    Environ Sci Technol; 2008 Sep; 42(18):6876-82. PubMed ID: 18853803
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous release of Fe and As during the reductive dissolution of Pb-As jarosite by Shewanella putrefaciens CN32.
    Smeaton CM; Walshe GE; Smith AM; Hudson-Edwards KA; Dubbin WE; Wright K; Beale AM; Fryer BJ; Weisener CG
    Environ Sci Technol; 2012 Dec; 46(23):12823-31. PubMed ID: 23126670
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitates.
    Shimizu M; Zhou J; Schröder C; Obst M; Kappler A; Borch T
    Environ Sci Technol; 2013; 47(23):13375-84. PubMed ID: 24219167
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Characterization and influence factors of Fe(III) reduction of Shewanella cinica D14T].
    Xu MY; Lin PZ; Kong XY; Zhong XY; Sun GP
    Wei Sheng Wu Xue Bao; 2005 Jun; 45(3):463-6. PubMed ID: 15989248
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Riboflavin-mediated RDX transformation in the presence of Shewanella putrefaciens CN32 and lepidocrocite.
    Bae S; Lee Y; Kwon MJ; Lee W
    J Hazard Mater; 2014 Jun; 274():24-31. PubMed ID: 24762697
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermodynamic controls on the microbial reduction of iron-bearing nontronite and uranium.
    Luan F; Gorski CA; Burgos WD
    Environ Sci Technol; 2014; 48(5):2750-8. PubMed ID: 24512199
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intracellular manganese granules formed by a subsurface bacterium.
    Glasauer S; Langley S; Beveridge TJ
    Environ Microbiol; 2004 Oct; 6(10):1042-8. PubMed ID: 15344929
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential arsenic mobilization from As-bearing ferrihydrite by iron-respiring Shewanella strains with different arsenic-reducing activities.
    Jiang S; Lee JH; Kim D; Kanaly RA; Kim MG; Hur HG
    Environ Sci Technol; 2013 Aug; 47(15):8616-23. PubMed ID: 23802758
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microbial reduction of Fe(III) and sorption/precipitation of Fe(II) on Shewanella putrefaciens strain CN32.
    Liu C; Zachara JM; Gorby YA; Szecsody JE; Brown CF
    Environ Sci Technol; 2001 Apr; 35(7):1385-93. PubMed ID: 11348071
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of Fe(III) chemical speciation on dissimilatory Fe(III) reduction by Shewanella putrefaciens.
    Haas JR; DiChristina TJ
    Environ Sci Technol; 2002 Feb; 36(3):373-80. PubMed ID: 11871551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of electron donor/acceptor concentrations on hydrous ferric oxide (HFO) bioreduction.
    Fredrickson JK; Kota S; Kukkadapu RK; Liu C; Zachara JM
    Biodegradation; 2003 Apr; 14(2):91-103. PubMed ID: 12877465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of the syntrophic partners in a coculture coupling anaerobic methanol oxidation to Fe(III) reduction.
    Daniel R; Warnecke F; Potekhina JS; Gottschalk G
    FEMS Microbiol Lett; 1999 Nov; 180(2):197-203. PubMed ID: 10556712
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biological redox cycling of iron in nontronite and its potential application in nitrate removal.
    Zhao L; Dong H; Kukkadapu RK; Zeng Q; Edelmann RE; Pentrák M; Agrawal A
    Environ Sci Technol; 2015 May; 49(9):5493-501. PubMed ID: 25873540
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical and biological interactions during nitrate and goethite reduction by Shewanella putrefaciens 200.
    Cooper DC; Picardal FW; Schimmelmann A; Coby AJ
    Appl Environ Microbiol; 2003 Jun; 69(6):3517-25. PubMed ID: 12788758
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment.
    Kappler A; Benz M; Schink B; Brune A
    FEMS Microbiol Ecol; 2004 Jan; 47(1):85-92. PubMed ID: 19712349
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enrichment of functional redox reactive proteins and identification by mass spectrometry results in several terminal Fe(III)-reducing candidate proteins in Shewanella oneidensis MR-1.
    Elias DA; Yang F; Mottaz HM; Beliaev AS; Lipton MS
    J Microbiol Methods; 2007 Feb; 68(2):367-75. PubMed ID: 17137661
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 2-Nitrophenol reduction promoted by S. putrefaciens 200 and biogenic ferrous iron: the role of different size-fractions of dissolved organic matter.
    Zhu Z; Tao L; Li F
    J Hazard Mater; 2014 Aug; 279():436-43. PubMed ID: 25093552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.