BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 17868438)

  • 1. The extracellular leucine-rich repeat superfamily; a comparative survey and analysis of evolutionary relationships and expression patterns.
    Dolan J; Walshe K; Alsbury S; Hokamp K; O'Keeffe S; Okafuji T; Miller SF; Tear G; Mitchell KJ
    BMC Genomics; 2007 Sep; 8():320. PubMed ID: 17868438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors.
    Matsushima N; Tanaka T; Enkhbayar P; Mikami T; Taga M; Yamada K; Kuroki Y
    BMC Genomics; 2007 May; 8():124. PubMed ID: 17517123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analyses of non-leucine-rich repeat (non-LRR) regions intervening between LRRs in proteins.
    Matsushima N; Mikami T; Tanaka T; Miyashita H; Yamada K; Kuroki Y
    Biochim Biophys Acta; 2009 Oct; 1790(10):1217-37. PubMed ID: 19580846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity.
    Ng AC; Eisenberg JM; Heath RJ; Huett A; Robinson CM; Nau GJ; Xavier RJ
    Proc Natl Acad Sci U S A; 2011 Mar; 108 Suppl 1(Suppl 1):4631-8. PubMed ID: 20616063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence-structure-function relations of the mosquito leucine-rich repeat immune proteins.
    Waterhouse RM; Povelones M; Christophides GK
    BMC Genomics; 2010 Sep; 11():531. PubMed ID: 20920294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LRRfinder2.0: a webserver for the prediction of leucine-rich repeats.
    Offord V; Werling D
    Innate Immun; 2013; 19(4):398-402. PubMed ID: 23178228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular phylogeny of the kelch-repeat superfamily reveals an expansion of BTB/kelch proteins in animals.
    Prag S; Adams JC
    BMC Bioinformatics; 2003 Sep; 4():42. PubMed ID: 13678422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A nested leucine rich repeat (LRR) domain: the precursor of LRRs is a ten or eleven residue motif.
    Matsushima N; Miyashita H; Mikami T; Kuroki Y
    BMC Microbiol; 2010 Sep; 10():235. PubMed ID: 20825685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and expression of a novel gene for a protein with leucine-rich repeats in the developing mouse nervous system.
    Taniguchi H; Tohyama M; Takagi T
    Brain Res Mol Brain Res; 1996 Feb; 36(1):45-52. PubMed ID: 9011764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana.
    Mondragón-Palomino M; Meyers BC; Michelmore RW; Gaut BS
    Genome Res; 2002 Sep; 12(9):1305-15. PubMed ID: 12213767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cutting edge: CATERPILLER: a large family of mammalian genes containing CARD, pyrin, nucleotide-binding, and leucine-rich repeat domains.
    Harton JA; Linhoff MW; Zhang J; Ting JP
    J Immunol; 2002 Oct; 169(8):4088-93. PubMed ID: 12370334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LRRfinder: a web application for the identification of leucine-rich repeats and an integrative Toll-like receptor database.
    Offord V; Coffey TJ; Werling D
    Dev Comp Immunol; 2010 Oct; 34(10):1035-41. PubMed ID: 20470819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of genes and repeats in the Nimrod superfamily.
    Somogyi K; Sipos B; Pénzes Z; Kurucz E; Zsámboki J; Hultmark D; Andó I
    Mol Biol Evol; 2008 Nov; 25(11):2337-47. PubMed ID: 18703524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a new expanding family of genes characterized by atypical LRR domains. Localization of a cluster preferentially expressed in oocyte.
    Dadé S; Callebaut I; Mermillod P; Monget P
    FEBS Lett; 2003 Dec; 555(3):533-8. PubMed ID: 14675769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of the Kekkon molecules, related members of the LIG superfamily.
    MacLaren CM; Evans TA; Alvarado D; Duffy JB
    Dev Genes Evol; 2004 Jul; 214(7):360-6. PubMed ID: 15179511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AMIGO and friends: an emerging family of brain-enriched, neuronal growth modulating, type I transmembrane proteins with leucine-rich repeats (LRR) and cell adhesion molecule motifs.
    Chen Y; Aulia S; Li L; Tang BL
    Brain Res Rev; 2006 Aug; 51(2):265-74. PubMed ID: 16414120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cluster based prediction of PDZ-peptide interactions.
    Kundu K; Backofen R
    BMC Genomics; 2014; 15 Suppl 1(Suppl 1):S5. PubMed ID: 24564547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TollML: a database of toll-like receptor structural motifs.
    Gong J; Wei T; Zhang N; Jamitzky F; Heckl WM; Rössle SC; Stark RW
    J Mol Model; 2010 Jul; 16(7):1283-9. PubMed ID: 20084417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary conservation of the leucine-rich repeat transmembrane protein Gp150 in Drosophila and Bombyx.
    Dhulkotia D; Nguyen D; Lai ZC
    Dev Genes Evol; 2000 Mar; 210(3):145-50. PubMed ID: 11180815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LRR conservation mapping to predict functional sites within protein leucine-rich repeat domains.
    Helft L; Reddy V; Chen X; Koller T; Federici L; Fernández-Recio J; Gupta R; Bent A
    PLoS One; 2011; 6(7):e21614. PubMed ID: 21789174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.