BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 17868694)

  • 1. Structural and kinetic characterization of quinolinate phosphoribosyltransferase (hQPRTase) from homo sapiens.
    Liu H; Woznica K; Catton G; Crawford A; Botting N; Naismith JH
    J Mol Biol; 2007 Oct; 373(3):755-63. PubMed ID: 17868694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions at the 2 and 5 positions of 5-phosphoribosyl pyrophosphate are essential in Salmonella typhimurium quinolinate phosphoribosyltransferase.
    Bello Z; Stitt B; Grubmeyer C
    Biochemistry; 2010 Feb; 49(7):1377-87. PubMed ID: 20047307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles for cationic residues at the quinolinic acid binding site of quinolinate phosphoribosyltransferase.
    Bello Z; Grubmeyer C
    Biochemistry; 2010 Feb; 49(7):1388-95. PubMed ID: 20047306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new function for a common fold: the crystal structure of quinolinic acid phosphoribosyltransferase.
    Eads JC; Ozturk D; Wexler TB; Grubmeyer C; Sacchettini JC
    Structure; 1997 Jan; 5(1):47-58. PubMed ID: 9016724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The sequencing expression, purification, and steady-state kinetic analysis of quinolinate phosphoribosyl transferase from Escherichia coli.
    Bhatia R; Calvo KC
    Arch Biochem Biophys; 1996 Jan; 325(2):270-8. PubMed ID: 8561507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive X-ray structural studies of the quinolinate phosphoribosyl transferase (BNA6) from Saccharomyces cerevisiae.
    di Luccio E; Wilson DK
    Biochemistry; 2008 Apr; 47(13):4039-50. PubMed ID: 18321072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical characterization of quinolinic acid phosphoribosyltransferase from Mycobacterium tuberculosis H37Rv and inhibition of its activity by pyrazinamide.
    Kim H; Shibayama K; Rimbara E; Mori S
    PLoS One; 2014; 9(6):e100062. PubMed ID: 24949952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic mechanism of uracil phosphoribosyltransferase from Escherichia coli and catalytic importance of the conserved proline in the PRPP binding site.
    Lundegaard C; Jensen KF
    Biochemistry; 1999 Mar; 38(11):3327-34. PubMed ID: 10079076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of quinolinic acid phosphoribosyltransferase from Mmycobacterium tuberculosis: a potential TB drug target.
    Sharma V; Grubmeyer C; Sacchettini JC
    Structure; 1998 Dec; 6(12):1587-99. PubMed ID: 9862811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion of a cosubstrate to an inhibitor: phosphorylation mutants of nicotinic acid phosphoribosyltransferase.
    Rajavel M; Lalo D; Gross JW; Grubmeyer C
    Biochemistry; 1998 Mar; 37(12):4181-8. PubMed ID: 9521740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quinolinate phosphoribosyltransferase: kinetic mechanism for a type II PRTase.
    Cao H; Pietrak BL; Grubmeyer C
    Biochemistry; 2002 Mar; 41(10):3520-8. PubMed ID: 11876660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissecting cobamide diversity through structural and functional analyses of the base-activating CobT enzyme of Salmonella enterica.
    Chan CH; Newmister SA; Talyor K; Claas KR; Rayment I; Escalante-Semerena JC
    Biochim Biophys Acta; 2014 Jan; 1840(1):464-75. PubMed ID: 24121107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the flexible loop of hypoxanthine-guanine-xanthine phosphoribosyltransferase from Tritrichomonas foetus in enzyme catalysis.
    Munagala N; Basus VJ; Wang CC
    Biochemistry; 2001 Apr; 40(14):4303-11. PubMed ID: 11284686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A point mutation at the subunit interface of hypoxanthine-guanine-xanthine phosphoribosyltransferase impairs activity: role of oligomerization in catalysis.
    Subbayya IN; Balaram H
    FEBS Lett; 2002 Jun; 521(1-3):72-6. PubMed ID: 12067729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallization and preliminary X-ray crystallographic analysis of human quinolinate phosphoribosyltransferase.
    Kang GB; Kim MK; Youn HS; An JY; Lee JG; Park KR; Lee SH; Kim Y; Fukuoka S; Eom SH
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Jan; 67(Pt 1):38-40. PubMed ID: 21206019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of a nicotinate phosphoribosyltransferase from Thermoplasma acidophilum.
    Shin DH; Oganesyan N; Jancarik J; Yokota H; Kim R; Kim SH
    J Biol Chem; 2005 May; 280(18):18326-35. PubMed ID: 15753098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The crystal structure of TrpD, a metabolic enzyme essential for lung colonization by Mycobacterium tuberculosis, in complex with its substrate phosphoribosylpyrophosphate.
    Lee CE; Goodfellow C; Javid-Majd F; Baker EN; Shaun Lott J
    J Mol Biol; 2006 Jan; 355(4):784-97. PubMed ID: 16337227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of product-bound Bacillus caldolyticus uracil phosphoribosyltransferase confirms ordered sequential substrate binding.
    Kadziola A; Neuhard J; Larsen S
    Acta Crystallogr D Biol Crystallogr; 2002 Jun; 58(Pt 6 Pt 2):936-45. PubMed ID: 12037295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and kinetic studies of the allosteric transition in Sulfolobus solfataricus uracil phosphoribosyltransferase: Permanent activation by engineering of the C-terminus.
    Christoffersen S; Kadziola A; Johansson E; Rasmussen M; Willemoës M; Jensen KF
    J Mol Biol; 2009 Oct; 393(2):464-77. PubMed ID: 19683539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring substrate binding and discrimination in fructose1, 6-bisphosphate and tagatose 1,6-bisphosphate aldolases.
    Zgiby SM; Thomson GJ; Qamar S; Berry A
    Eur J Biochem; 2000 Mar; 267(6):1858-68. PubMed ID: 10712619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.