These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 17869158)

  • 1. Shock-wave model of acoustic cavitation.
    Peshkovsky SL; Peshkovsky AS
    Ultrason Sonochem; 2008 Apr; 15(4):618-628. PubMed ID: 17869158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shock wave emission upon spherical bubble collapse during cavitation-induced megasonic surface cleaning.
    Minsier V; Proost J
    Ultrason Sonochem; 2008 Apr; 15(4):598-604. PubMed ID: 17662636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound.
    Brujan EA; Ikeda T; Matsumoto Y
    Phys Med Biol; 2005 Oct; 50(20):4797-809. PubMed ID: 16204873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bubbles in an acoustic field: an overview.
    Ashokkumar M; Lee J; Kentish S; Grieser F
    Ultrason Sonochem; 2007 Apr; 14(4):470-5. PubMed ID: 17234444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical study of the synergistic effect of cavitation and micro-abrasive particles.
    Fu Y; Zhu X; Wang J; Gong T
    Ultrason Sonochem; 2022 Sep; 89():106119. PubMed ID: 35969914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and theoretical characterisation of sonochemical cells. Part 2: cell disruptors (Ultrasonic horns) and cavity cluster collapse.
    Birkin PR; Offin DG; Leighton TG
    Phys Chem Chem Phys; 2005 Feb; 7(3):530-7. PubMed ID: 19785140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radial oscillation and translational motion of a gas bubble in a micro-cavity.
    Zhang X; Li F; Wang C; Guo J; Mo R; Hu J; Chen S; He J; Liu H
    Ultrason Sonochem; 2022 Mar; 84():105957. PubMed ID: 35203000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.
    Yasui K; Towata A; Tuziuti T; Kozuka T; Kato K
    J Acoust Soc Am; 2011 Nov; 130(5):3233-42. PubMed ID: 22087995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy analysis during acoustic bubble oscillations: relationship between bubble energy and sonochemical parameters.
    Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrasonics; 2014 Jan; 54(1):227-32. PubMed ID: 23683796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intense cavitation at extreme static pressure.
    Pishchalnikov YA; Gutierrez J; Dunbar WW; Philpott RW
    Ultrasonics; 2016 Feb; 65():380-9. PubMed ID: 26341849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound.
    Kreider W; Crum LA; Bailey MR; Sapozhnikov OA
    J Acoust Soc Am; 2011 Nov; 130(5):3511-30. PubMed ID: 22088026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of static pressure on the strength of inertial cavitation events.
    Bader KB; Mobley J; Church CC; Gaitan DF
    J Acoust Soc Am; 2012 Oct; 132(4):2286-91. PubMed ID: 23039425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic cavitation, bubble dynamics and sonoluminescence.
    Lauterborn W; Kurz T; Geisler R; Schanz D; Lindau O
    Ultrason Sonochem; 2007 Apr; 14(4):484-91. PubMed ID: 17254826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the bubble transport mechanism in an acoustic standing wave field.
    Xi X; Cegla FB; Lowe M; Thiemann A; Nowak T; Mettin R; Holsteyns F; Lippert A
    Ultrasonics; 2011 Dec; 51(8):1014-25. PubMed ID: 21719064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical modelling of ultrasonic waves in a bubbly Newtonian liquid using a high-order acoustic cavitation model.
    Lebon GSB; Tzanakis I; Djambazov G; Pericleous K; Eskin DG
    Ultrason Sonochem; 2017 Jul; 37():660-668. PubMed ID: 28427680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of dissolved gases in water on acoustic cavitation and bubble growth rate in 0.83 MHz megasonic of interest to wafer cleaning.
    Kang BK; Kim MS; Park JG
    Ultrason Sonochem; 2014 Jul; 21(4):1496-503. PubMed ID: 24529613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fragmentation of cavitation bubble in ultrasound field under small pressure amplitude.
    Yamamoto T; Hatanaka SI; Komarov SV
    Ultrason Sonochem; 2019 Nov; 58():104684. PubMed ID: 31450353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of static pressure on the inertial cavitation threshold.
    Bader KB; Raymond JL; Mobley J; Church CC; Felipe Gaitan D
    J Acoust Soc Am; 2012 Aug; 132(2):728-37. PubMed ID: 22894195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Gilmore-NASG model to predict single-bubble cavitation in compressible liquids.
    Denner F
    Ultrason Sonochem; 2021 Jan; 70():105307. PubMed ID: 32866881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feedback loop process to control acoustic cavitation.
    Sabraoui A; Inserra C; Gilles B; Béra JC; Mestas JL
    Ultrason Sonochem; 2011 Mar; 18(2):589-94. PubMed ID: 20843725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.