These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1189 related articles for article (PubMed ID: 17869173)
1. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications. Nicula R; Lüthen F; Stir M; Nebe B; Burkel E Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173 [TBL] [Abstract][Full Text] [Related]
2. Novel production method and in-vitro cell compatibility of porous Ti-6Al-4V alloy disk for hard tissue engineering. Bhattarai SR; Khalil KA; Dewidar M; Hwang PH; Yi HK; Kim HY J Biomed Mater Res A; 2008 Aug; 86(2):289-99. PubMed ID: 17957720 [TBL] [Abstract][Full Text] [Related]
3. Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering. Li Y; Xiong J; Wong CS; Hodgson PD; Wen C Tissue Eng Part A; 2009 Oct; 15(10):3151-9. PubMed ID: 19351266 [TBL] [Abstract][Full Text] [Related]
4. New surface-hardened, low-modulus, corrosion-resistant Ti-13Nb-13Zr alloy for total hip arthroplasty. Davidson JA; Mishra AK; Kovacs P; Poggie RA Biomed Mater Eng; 1994; 4(3):231-43. PubMed ID: 7950871 [TBL] [Abstract][Full Text] [Related]
5. Mechanical properties and bioactive surface modification via alkali-heat treatment of a porous Ti-18Nb-4Sn alloy for biomedical applications. Xiong J; Li Y; Wang X; Hodgson P; Wen C Acta Biomater; 2008 Nov; 4(6):1963-8. PubMed ID: 18524702 [TBL] [Abstract][Full Text] [Related]
6. Comparative corrosion study of Ti-Ta alloys for dental applications. Mareci D; Chelariu R; Gordin DM; Ungureanu G; Gloriant T Acta Biomater; 2009 Nov; 5(9):3625-39. PubMed ID: 19508903 [TBL] [Abstract][Full Text] [Related]
7. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming. Hollander DA; von Walter M; Wirtz T; Sellei R; Schmidt-Rohlfing B; Paar O; Erli HJ Biomaterials; 2006 Mar; 27(7):955-63. PubMed ID: 16115681 [TBL] [Abstract][Full Text] [Related]
8. The effect of surface chemistry modification of titanium alloy on signalling pathways in human osteoblasts. Zreiqat H; Valenzuela SM; Nissan BB; Roest R; Knabe C; Radlanski RJ; Renz H; Evans PJ Biomaterials; 2005 Dec; 26(36):7579-86. PubMed ID: 16002135 [TBL] [Abstract][Full Text] [Related]
9. Osteoblast response and osseointegration of a Ti-6Al-4V alloy implant incorporating strontium. Park JW; Kim HK; Kim YJ; Jang JH; Song H; Hanawa T Acta Biomater; 2010 Jul; 6(7):2843-51. PubMed ID: 20085830 [TBL] [Abstract][Full Text] [Related]
10. Porous TiNbZr alloy scaffolds for biomedical applications. Wang X; Li Y; Xiong J; Hodgson PD; Wen C Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597 [TBL] [Abstract][Full Text] [Related]
11. Effect of a niobium-containing titanium alloy on osteoblast behavior in culture. Shapira L; Klinger A; Tadir A; Wilensky A; Halabi A Clin Oral Implants Res; 2009 Jun; 20(6):578-82. PubMed ID: 19530314 [TBL] [Abstract][Full Text] [Related]
12. Preparation and properties of biomedical porous titanium alloys by gelcasting. Yang D; Shao H; Guo Z; Lin T; Fan L Biomed Mater; 2011 Aug; 6(4):045010. PubMed ID: 21747152 [TBL] [Abstract][Full Text] [Related]
13. Surface modification by alkali and heat treatments in titanium alloys. Lee BH; Do Kim Y; Shin JH; Hwan Lee K J Biomed Mater Res; 2002 Sep; 61(3):466-73. PubMed ID: 12115472 [TBL] [Abstract][Full Text] [Related]
14. Corrosion resistance and biocompatibility of a new porous surface for titanium implants. Simon M; Lagneau C; Moreno J; Lissac M; Dalard F; Grosgogeat B Eur J Oral Sci; 2005 Dec; 113(6):537-45. PubMed ID: 16324146 [TBL] [Abstract][Full Text] [Related]
15. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials. Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246 [TBL] [Abstract][Full Text] [Related]
16. Increased osteoblast functions on undoped and yttrium-doped nanocrystalline hydroxyapatite coatings on titanium. Sato M; Sambito MA; Aslani A; Kalkhoran NM; Slamovich EB; Webster TJ Biomaterials; 2006 Apr; 27(11):2358-69. PubMed ID: 16337679 [TBL] [Abstract][Full Text] [Related]
17. The effect of post-sintering heat treatments on the fatigue properties of porous coated Ti-6Al-4V alloy. Cook SD; Thongpreda N; Anderson RC; Haddad RJ J Biomed Mater Res; 1988 Apr; 22(4):287-302. PubMed ID: 3372550 [TBL] [Abstract][Full Text] [Related]
18. Biocompatibility and osteoconduction of active porous calcium-phosphate films on a novel Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy. Yu S; Yu Z; Wang G; Han J; Ma X; Dargusch MS Colloids Surf B Biointerfaces; 2011 Jul; 85(2):103-15. PubMed ID: 21439798 [TBL] [Abstract][Full Text] [Related]
19. The fatigue strength of porous-coated Ti-6%Al-4%V implant alloy. Yue S; Pilliar RM; Weatherly GC J Biomed Mater Res; 1984; 18(9):1043-58. PubMed ID: 6544792 [TBL] [Abstract][Full Text] [Related]
20. Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Traini T; Mangano C; Sammons RL; Mangano F; Macchi A; Piattelli A Dent Mater; 2008 Nov; 24(11):1525-33. PubMed ID: 18502498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]