BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 17869214)

  • 1. Novel subsets of the Arabidopsis plasmalemma phosphoproteome identify phosphorylation sites in secondary active transporters.
    Hem S; Rofidal V; Sommerer N; Rossignol M
    Biochem Biophys Res Commun; 2007 Nov; 363(2):375-80. PubMed ID: 17869214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of phosphoproteins in Arabidopsis thaliana leaves using polyethylene glycol fractionation, immobilized metal-ion affinity chromatography, two-dimensional gel electrophoresis and mass spectrometry.
    Aryal UK; Krochko JE; Ross AR
    J Proteome Res; 2012 Jan; 11(1):425-37. PubMed ID: 22092075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A survey of the Arabidopsis thaliana mitochondrial phosphoproteome.
    Ito J; Taylor NL; Castleden I; Weckwerth W; Millar AH; Heazlewood JL
    Proteomics; 2009 Sep; 9(17):4229-40. PubMed ID: 19688752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction specificity of Arabidopsis 14-3-3 proteins with phototropin receptor kinases.
    Sullivan S; Thomson CE; Kaiserli E; Christie JM
    FEBS Lett; 2009 Jul; 583(13):2187-93. PubMed ID: 19524572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteome and phosphoproteome dynamic change during cell dedifferentiation in Arabidopsis.
    Chitteti BR; Peng Z
    Proteomics; 2007 May; 7(9):1473-500. PubMed ID: 17407188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation dynamics of membrane proteins from Arabidopsis roots submitted to salt stress.
    Vialaret J; Di Pietro M; Hem S; Maurel C; Rossignol M; Santoni V
    Proteomics; 2014 May; 14(9):1058-70. PubMed ID: 24616185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphoproteome exploration reveals a reformatting of cellular processes in response to low sterol biosynthetic capacity in Arabidopsis.
    Heintz D; Gallien S; Compagnon V; Berna A; Suzuki M; Yoshida S; Muranaka T; Van Dorsselaer A; Schaeffer C; Bach TJ; Schaller H
    J Proteome Res; 2012 Feb; 11(2):1228-39. PubMed ID: 22182420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enrichment of phosphoproteins and phosphopeptide derivatization identify universal stress proteins in elicitor-treated Arabidopsis.
    Lenman M; Sörensson C; Andreasson E
    Mol Plant Microbe Interact; 2008 Oct; 21(10):1275-84. PubMed ID: 18785823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted quantitative phosphoproteomics approach for the detection of phospho-tyrosine signaling in plants.
    Mithoe SC; Boersema PJ; Berke L; Snel B; Heck AJ; Menke FL
    J Proteome Res; 2012 Jan; 11(1):438-48. PubMed ID: 22074104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the phosphoproteome of mature Arabidopsis pollen.
    Mayank P; Grossman J; Wuest S; Boisson-Dernier A; Roschitzki B; Nanni P; Nühse T; Grossniklaus U
    Plant J; 2012 Oct; 72(1):89-101. PubMed ID: 22631563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphoproteomics in Arabidopsis: moving from empirical to predictive science.
    Peck SC
    J Exp Bot; 2006; 57(7):1523-7. PubMed ID: 16531460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsically unstructured phosphoprotein TSP9 regulates light harvesting in Arabidopsis thaliana.
    Fristedt R; Carlberg I; Zygadlo A; Piippo M; Nurmi M; Aro EM; Scheller HV; Vener AV
    Biochemistry; 2009 Jan; 48(2):499-509. PubMed ID: 19113838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic and phosphoproteomic analyses of chromatin-associated proteins from Arabidopsis thaliana.
    Bigeard J; Rayapuram N; Bonhomme L; Hirt H; Pflieger D
    Proteomics; 2014 Oct; 14(19):2141-55. PubMed ID: 24889360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enrichment and Analysis of Intact Phosphoproteins in Arabidopsis Seedlings.
    Aryal UK; Ross AR; Krochko JE
    PLoS One; 2015; 10(7):e0130763. PubMed ID: 26158488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges facing the development and use of protein chips to analyze the phosphoproteome.
    Beernink HT; Nock S
    Expert Rev Proteomics; 2005 Aug; 2(4):487-97. PubMed ID: 16097883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphoproteome profile of human liver Chang's cell based on 2-DE with fluorescence staining and MALDI-TOF/TOF-MS.
    Liu J; Cai Y; Wang J; Zhou Q; Yang B; Lu Z; Jiao L; Zhang D; Sui S; Jiang Y; Ying W; Qian X
    Electrophoresis; 2007 Dec; 28(23):4348-58. PubMed ID: 17987627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins.
    Bigeard J; Rayapuram N; Pflieger D; Hirt H
    Proteomics; 2014 Oct; 14(19):2127-40. PubMed ID: 24889195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant protein phosphorylation monitored by capillary liquid chromatography--element mass spectrometry.
    Krüger R; Wolschin F; Weckwerth W; Bettmer J; Lehmann WD
    Biochem Biophys Res Commun; 2007 Mar; 355(1):89-96. PubMed ID: 17288992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoproteome analysis of the human Chang liver cells using SCX and a complementary mass spectrometric strategy.
    Sui S; Wang J; Yang B; Song L; Zhang J; Chen M; Liu J; Lu Z; Cai Y; Chen S; Bi W; Zhu Y; He F; Qian X
    Proteomics; 2008 May; 8(10):2024-34. PubMed ID: 18491316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants.
    Nakagami H; Sugiyama N; Mochida K; Daudi A; Yoshida Y; Toyoda T; Tomita M; Ishihama Y; Shirasu K
    Plant Physiol; 2010 Jul; 153(3):1161-74. PubMed ID: 20466843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.