BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 17869362)

  • 1. Evaluation of the Weibull and log normal distribution functions as survival models of Escherichia coli under isothermal and non isothermal conditions.
    Aragao GM; Corradini MG; Normand MD; Peleg M
    Int J Food Microbiol; 2007 Nov; 119(3):243-57. PubMed ID: 17869362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of an organism's inactivation patterns from three single survival ratios determined at the end of three non-isothermal heat treatments.
    Corradini MG; Normand MD; Peleg M
    Int J Food Microbiol; 2008 Aug; 126(1-2):98-111. PubMed ID: 18579249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracting survival parameters from isothermal, isobaric, and "iso-concentration" inactivation experiments by the "3 end points method".
    Corradini MG; Normand MD; Newcomer C; Schaffner DW; Peleg M
    J Food Sci; 2009; 74(1):R1-R11. PubMed ID: 19200112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and predicting non-isothermal microbial growth using general purpose software.
    Corradini MG; Amézquita A; Normand MD; Peleg M
    Int J Food Microbiol; 2006 Feb; 106(2):223-8. PubMed ID: 16226331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On modeling and simulating transitions between microbial growth and inactivation or vice versa.
    Corradini MG; Peleg M
    Int J Food Microbiol; 2006 Apr; 108(1):22-35. PubMed ID: 16403587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactive software for estimating the efficacy of non-isothermal heat preservation processes.
    Peleg M; Normand MD; Corradini MG
    Int J Food Microbiol; 2008 Aug; 126(1-2):250-7. PubMed ID: 18571264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating non-isothermal bacterial growth in foods from isothermal experimental data.
    Corradini MG; Peleg M
    J Appl Microbiol; 2005; 99(1):187-200. PubMed ID: 15960679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Weibullian model for microbial injury and mortality.
    Corradini MG; Peleg M
    Int J Food Microbiol; 2007 Nov; 119(3):319-28. PubMed ID: 17904675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration of the applicability of the Weibull-log-logistic survival model to the isothermal and nonisothermal inactivation of Escherichia coli K-12 MG1655.
    Corradini MG; Peleg M
    J Food Prot; 2004 Nov; 67(11):2617-21. PubMed ID: 15553651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating microbial growth parameters from non-isothermal data: a case study with Clostridium perfringens.
    Smith-Simpson S; Corradini MG; Normand MD; Peleg M; Schaffner DW
    Int J Food Microbiol; 2007 Sep; 118(3):294-303. PubMed ID: 17804106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel approach to predicting microbial inactivation kinetics during high pressure processing.
    Koseki S; Yamamoto K
    Int J Food Microbiol; 2007 May; 116(2):275-82. PubMed ID: 17363099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generating microbial survival curves during thermal processing in real time.
    Peleg M; Normand MD; Corradini MG
    J Appl Microbiol; 2005; 98(2):406-17. PubMed ID: 15659195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inactivation of Escherichia coli, Listeria monocytogenes and Yersinia enterocolitica in fermented sausages during maturation/storage.
    Lindqvist R; Lindblad M
    Int J Food Microbiol; 2009 Jan; 129(1):59-67. PubMed ID: 19064299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of Escherichia coli by high hydrostatic pressure at different temperatures in buffer and carrot juice.
    Van Opstal I; Vanmuysen SC; Wuytack EY; Masschalck B; Michiels CW
    Int J Food Microbiol; 2005 Feb; 98(2):179-91. PubMed ID: 15681045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling non-isothermal heat inactivation of microorganisms having biphasic isothermal survival curves.
    Corradini MG; Normand MD; Peleg M
    Int J Food Microbiol; 2007 May; 116(3):391-9. PubMed ID: 17395330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic and deterministic model of microbial heat inactivation.
    Corradini MG; Normand MD; Peleg M
    J Food Sci; 2010 Mar; 75(2):R59-70. PubMed ID: 20492253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate estimation of cardinal growth temperatures of Escherichia coli from optimal dynamic experiments.
    Van Derlinden E; Bernaerts K; Van Impe JF
    Int J Food Microbiol; 2008 Nov; 128(1):89-100. PubMed ID: 18835500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of non-linear microbial inactivation kinetics under dynamic conditions.
    Valdramidis VP; Geeraerd AH; Bernaerts K; Van Impe JF
    Int J Food Microbiol; 2008 Nov; 128(1):146-52. PubMed ID: 18823671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavior of inactivation kinetics of Escherichia coli by dense phase carbon dioxide.
    Liao H; Zhang Y; Hu X; Liao X; Wu J
    Int J Food Microbiol; 2008 Aug; 126(1-2):93-7. PubMed ID: 18565607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive model of Vibrio parahaemolyticus growth and survival on salmon meat as a function of temperature.
    Yang ZQ; Jiao XA; Li P; Pan ZM; Huang JL; Gu RX; Fang WM; Chao GX
    Food Microbiol; 2009 Sep; 26(6):606-14. PubMed ID: 19527836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.