These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
685 related articles for article (PubMed ID: 17869543)
21. Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks. Yuan H; Zotev V; Phillips R; Drevets WC; Bodurka J Neuroimage; 2012 May; 60(4):2062-72. PubMed ID: 22381593 [TBL] [Abstract][Full Text] [Related]
22. Mapping the end-tidal CO2 response function in the resting-state BOLD fMRI signal: spatial specificity, test-retest reliability and effect of fMRI sampling rate. Golestani AM; Chang C; Kwinta JB; Khatamian YB; Jean Chen J Neuroimage; 2015 Jan; 104():266-77. PubMed ID: 25462695 [TBL] [Abstract][Full Text] [Related]
23. Dynamic-flip-angle ECG-gating with nuisance signal regression improves resting-state BOLD functional connectivity mapping by reducing cardiogenic noise. Hu C; Tokoglu F; Scheinost D; Qiu M; Shen X; Peters DC; Galiana G; Constable RT Magn Reson Med; 2019 Sep; 82(3):911-923. PubMed ID: 31016782 [TBL] [Abstract][Full Text] [Related]
24. Detecting resting-state brain activity by spontaneous cerebral blood volume fluctuations using whole brain vascular space occupancy imaging. Miao X; Gu H; Yan L; Lu H; Wang DJ; Zhou XJ; Zhuo Y; Yang Y Neuroimage; 2014 Jan; 84():575-84. PubMed ID: 24055705 [TBL] [Abstract][Full Text] [Related]
25. Cardiorespiratory effects on default-mode network activity as measured with fMRI. van Buuren M; Gladwin TE; Zandbelt BB; van den Heuvel M; Ramsey NF; Kahn RS; Vink M Hum Brain Mapp; 2009 Sep; 30(9):3031-42. PubMed ID: 19180557 [TBL] [Abstract][Full Text] [Related]
26. Is fMRI "noise" really noise? Resting state nuisance regressors remove variance with network structure. Bright MG; Murphy K Neuroimage; 2015 Jul; 114():158-69. PubMed ID: 25862264 [TBL] [Abstract][Full Text] [Related]
27. Cluster analysis of resting-state fMRI time series. Mezer A; Yovel Y; Pasternak O; Gorfine T; Assaf Y Neuroimage; 2009 May; 45(4):1117-25. PubMed ID: 19146962 [TBL] [Abstract][Full Text] [Related]
28. Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. Birn RM; Diamond JB; Smith MA; Bandettini PA Neuroimage; 2006 Jul; 31(4):1536-48. PubMed ID: 16632379 [TBL] [Abstract][Full Text] [Related]
29. WHOCARES: WHOle-brain CArdiac signal REgression from highly accelerated simultaneous multi-Slice fMRI acquisitions. Colenbier N; Marino M; Arcara G; Frederick B; Pellegrino G; Marinazzo D; Ferrazzi G J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 35998568 [No Abstract] [Full Text] [Related]
30. Mapping dependencies of BOLD signal change to end-tidal CO Cauzzo S; Callara AL; Morelli MS; Hartwig V; Esposito F; Montanaro D; Passino C; Emdin M; Giannoni A; Vanello N J Neurosci Methods; 2021 Oct; 362():109317. PubMed ID: 34380051 [TBL] [Abstract][Full Text] [Related]
31. The utility of near-infrared spectroscopy in the regression of low-frequency physiological noise from functional magnetic resonance imaging data. Cooper RJ; Gagnon L; Goldenholz DM; Boas DA; Greve DN Neuroimage; 2012 Feb; 59(4):3128-38. PubMed ID: 22119653 [TBL] [Abstract][Full Text] [Related]
33. A kernel machine-based fMRI physiological noise removal method. Song X; Chen NK; Gaur P Magn Reson Imaging; 2014 Feb; 32(2):150-62. PubMed ID: 24321306 [TBL] [Abstract][Full Text] [Related]
34. Physiological origin of low-frequency drift in blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI). Yan L; Zhuo Y; Ye Y; Xie SX; An J; Aguirre GK; Wang J Magn Reson Med; 2009 Apr; 61(4):819-27. PubMed ID: 19189286 [TBL] [Abstract][Full Text] [Related]
35. Integration of motion correction and physiological noise regression in fMRI. Jones TB; Bandettini PA; Birn RM Neuroimage; 2008 Aug; 42(2):582-90. PubMed ID: 18583155 [TBL] [Abstract][Full Text] [Related]
36. Short repetition time multiband echo-planar imaging with simultaneous pulse recording allows dynamic imaging of the cardiac pulsation signal. Tong Y; Hocke LM; Frederick Bd Magn Reson Med; 2014 Nov; 72(5):1268-76. PubMed ID: 24272768 [TBL] [Abstract][Full Text] [Related]
37. Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal. Wise RG; Ide K; Poulin MJ; Tracey I Neuroimage; 2004 Apr; 21(4):1652-64. PubMed ID: 15050588 [TBL] [Abstract][Full Text] [Related]
38. On the Stability of BOLD fMRI Correlations. Laumann TO; Snyder AZ; Mitra A; Gordon EM; Gratton C; Adeyemo B; Gilmore AW; Nelson SM; Berg JJ; Greene DJ; McCarthy JE; Tagliazucchi E; Laufs H; Schlaggar BL; Dosenbach NUF; Petersen SE Cereb Cortex; 2017 Oct; 27(10):4719-4732. PubMed ID: 27591147 [TBL] [Abstract][Full Text] [Related]
39. Spontaneous low-frequency blood oxygenation level-dependent fluctuations and functional connectivity analysis of the 'resting' brain. Auer DP Magn Reson Imaging; 2008 Sep; 26(7):1055-64. PubMed ID: 18657923 [TBL] [Abstract][Full Text] [Related]
40. Identification of physiological response functions to correct for fluctuations in resting-state fMRI related to heart rate and respiration. Kassinopoulos M; Mitsis GD Neuroimage; 2019 Nov; 202():116150. PubMed ID: 31487547 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]