These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 17869585)

  • 1. Plasmon-waveguide resonance (PWR) spectroscopy for directly viewing rates of GPCR/G-protein interactions and quantifying affinities.
    Hruby VJ; Tollin G
    Curr Opin Pharmacol; 2007 Oct; 7(5):507-14. PubMed ID: 17869585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of G-Protein Coupled Receptor Signaling in Membrane Environment by Plasmon Waveguide Resonance.
    Alves ID; Lecomte S
    Acc Chem Res; 2019 Apr; 52(4):1059-1067. PubMed ID: 30865424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Techniques: plasmon-waveguide resonance (PWR) spectroscopy as a tool to study ligand-GPCR interactions.
    Tollin G; Salamon Z; Hruby VJ
    Trends Pharmacol Sci; 2003 Dec; 24(12):655-9. PubMed ID: 14654307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of plasmon waveguide resonance (PWR) spectroscopy for examining binding, signaling and lipid domain partitioning of membrane proteins.
    Hruby VJ; Alves I; Cowell S; Salamon Z; Tollin G
    Life Sci; 2010 Apr; 86(15-16):569-74. PubMed ID: 19281827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon-waveguide resonance spectroscopy studies of lateral segregation in solid-supported proteolipid bilayers.
    Salamon Z; Devanathan S; Tollin G
    Methods Mol Biol; 2007; 398():159-78. PubMed ID: 18214380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chapter 6. Plasmon resonance methods in membrane protein biology applications to GPCR signaling.
    Salamon Z; Tollin G; Alves I; Hruby V
    Methods Enzymol; 2009; 461():123-46. PubMed ID: 19480917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different structural states of the proteolipid membrane are produced by ligand binding to the human delta-opioid receptor as shown by plasmon-waveguide resonance spectroscopy.
    Alves ID; Cowell SM; Salamon Z; Devanathan S; Tollin G; Hruby VJ
    Mol Pharmacol; 2004 May; 65(5):1248-57. PubMed ID: 15102953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon-waveguide resonance spectroscopy: a new tool for investigating signal transduction by G-protein coupled receptors.
    Tollin G; Salamon Z; Cowell S; Hruby VJ
    Life Sci; 2003 Nov; 73(26):3307-11. PubMed ID: 14572873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmon-waveguide resonance studies of ligand binding to the human beta 2-adrenergic receptor.
    Devanathan S; Yao Z; Salamon Z; Kobilka B; Tollin G
    Biochemistry; 2004 Mar; 43(11):3280-8. PubMed ID: 15023079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery.
    Patching SG
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt A):43-55. PubMed ID: 23665295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon-waveguide resonance spectroscopy applied to three potential drug targets: cyclooxygenase-2, hepatitis C virus RNA polymerase and integrin alpha V beta 3.
    Devanathan S; Walker MC; Salamon Z; Tollin G
    J Pharm Biomed Anal; 2004 Nov; 36(4):711-9. PubMed ID: 15533662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphical analysis of mass and anisotropy changes observed by plasmon-waveguide resonance spectroscopy can provide useful insights into membrane protein function.
    Salamon Z; Tollin G
    Biophys J; 2004 Apr; 86(4):2508-16. PubMed ID: 15041687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband plasmon waveguide resonance spectroscopy for probing biological thin films.
    Zhang H; Orosz KS; Takahashi H; Saavedra SS
    Appl Spectrosc; 2009 Sep; 63(9):1062-7. PubMed ID: 19796490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring rhodopsin-G-protein interactions by surface plasmon resonance.
    Northup J
    Methods Mol Biol; 2004; 261():93-112. PubMed ID: 15064451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selectivity, cooperativity, and reciprocity in the interactions between the delta-opioid receptor, its ligands, and G-proteins.
    Alves ID; Ciano KA; Boguslavski V; Varga E; Salamon Z; Yamamura HI; Hruby VJ; Tollin G
    J Biol Chem; 2004 Oct; 279(43):44673-82. PubMed ID: 15317820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon-waveguide resonance and impedance spectroscopy studies of the interaction between penetratin and supported lipid bilayer membranes.
    Salamon Z; Lindblom G; Tollin G
    Biophys J; 2003 Mar; 84(3):1796-807. PubMed ID: 12609881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insights into the molecular mechanisms of biomembrane structural changes and interactions by optical biosensor technology.
    Lee TH; Hirst DJ; Aguilar MI
    Biochim Biophys Acta; 2015 Sep; 1848(9):1868-85. PubMed ID: 26009270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphatidylethanolamine enhances rhodopsin photoactivation and transducin binding in a solid supported lipid bilayer as determined using plasmon-waveguide resonance spectroscopy.
    Alves ID; Salgado GF; Salamon Z; Brown MF; Tollin G; Hruby VJ
    Biophys J; 2005 Jan; 88(1):198-210. PubMed ID: 15501933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon resonance methods in GPCR signaling and other membrane events.
    Alves ID; Park CK; Hruby VJ
    Curr Protein Pept Sci; 2005 Aug; 6(4):293-312. PubMed ID: 16101432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface plasmon resonance study of g protein/receptor coupling in a lipid bilayer-free system.
    Komolov KE; Senin II; Philippov PP; Koch KW
    Anal Chem; 2006 Feb; 78(4):1228-34. PubMed ID: 16478116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.