These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 17870091)

  • 1. Crystal structure of family 5 uracil-DNA glycosylase bound to DNA.
    Kosaka H; Hoseki J; Nakagawa N; Kuramitsu S; Masui R
    J Mol Biol; 2007 Nov; 373(4):839-50. PubMed ID: 17870091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase.
    Putnam CD; Shroyer MJ; Lundquist AJ; Mol CD; Arvai AS; Mosbaugh DW; Tainer JA
    J Mol Biol; 1999 Mar; 287(2):331-46. PubMed ID: 10080896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unique features of the structure and interactions of mycobacterial uracil-DNA glycosylase: structure of a complex of the Mycobacterium tuberculosis enzyme in comparison with those from other sources.
    Kaushal PS; Talawar RK; Krishna PD; Varshney U; Vijayan M
    Acta Crystallogr D Biol Crystallogr; 2008 May; 64(Pt 5):551-60. PubMed ID: 18453691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of a family 4 uracil-DNA glycosylase from Thermus thermophilus HB8.
    Hoseki J; Okamoto A; Masui R; Shibata T; Inoue Y; Yokoyama S; Kuramitsu S
    J Mol Biol; 2003 Oct; 333(3):515-26. PubMed ID: 14556741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights on the role of the gamma-herpesvirus uracil-DNA glycosylase leucine loop revealed by the structure of the Epstein-Barr virus enzyme in complex with an inhibitor protein.
    Géoui T; Buisson M; Tarbouriech N; Burmeister WP
    J Mol Biol; 2007 Feb; 366(1):117-31. PubMed ID: 17157317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specificity and catalysis of uracil DNA glycosylase. A molecular dynamics study of reactant and product complexes with DNA.
    Luo N; Mehler E; Osman R
    Biochemistry; 1999 Jul; 38(29):9209-20. PubMed ID: 10413495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA.
    Slupphaug G; Mol CD; Kavli B; Arvai AS; Krokan HE; Tainer JA
    Nature; 1996 Nov; 384(6604):87-92. PubMed ID: 8900285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights from xanthine and uracil DNA glycosylase activities of bacterial and human SMUG1: switching SMUG1 to UDG.
    Mi R; Dong L; Kaulgud T; Hackett KW; Dominy BN; Cao W
    J Mol Biol; 2009 Jan; 385(3):761-78. PubMed ID: 18835277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Bacillus subtilis uracil-DNA glycosylase and its inhibition by phage φ29 protein p56.
    Pérez-Lago L; Serrano-Heras G; Baños B; Lázaro JM; Alcorlo M; Villar L; Salas M
    Mol Microbiol; 2011 Jun; 80(6):1657-66. PubMed ID: 21542855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of TTHA1264, a putative M16-family zinc peptidase from Thermus thermophilus HB8 that is homologous to the beta subunit of mitochondrial processing peptidase.
    Ohtsuka J; Ichihara Y; Ebihara A; Nagata K; Tanokura M
    Proteins; 2009 May; 75(3):774-80. PubMed ID: 19241474
    [No Abstract]   [Full Text] [Related]  

  • 11. The structural basis of specific base-excision repair by uracil-DNA glycosylase.
    Savva R; McAuley-Hecht K; Brown T; Pearl L
    Nature; 1995 Feb; 373(6514):487-93. PubMed ID: 7845459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural insights into lesion recognition and repair by the bacterial 8-oxoguanine DNA glycosylase MutM.
    Fromme JC; Verdine GL
    Nat Struct Biol; 2002 Jul; 9(7):544-52. PubMed ID: 12055620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SMUG2 DNA glycosylase from
    Pang P; Yang Y; Li J; Wang Z; Cao W; Xie W
    Biochem J; 2017 Mar; 474(6):923-938. PubMed ID: 28049757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional changes in a novel uracil-DNA glycosylase determined by mutational analyses.
    Im EK; Han YS; Chung JH
    Mikrobiologiia; 2008; 77(5):644-50. PubMed ID: 19004346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specificity and catalytic mechanism in family 5 uracil DNA glycosylase.
    Xia B; Liu Y; Li W; Brice AR; Dominy BN; Cao W
    J Biol Chem; 2014 Jun; 289(26):18413-26. PubMed ID: 24838246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of family 4 uracil-DNA glycosylase from Sulfolobus tokodaii and a function of tyrosine 170 in DNA binding.
    Kawai A; Higuchi S; Tsunoda M; Nakamura KT; Yamagata Y; Miyamoto S
    FEBS Lett; 2015 Sep; 589(19 Pt B):2675-82. PubMed ID: 26318717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uracil DNA glycosylase (UDG) activities in Bradyrhizobium diazoefficiens: characterization of a new class of UDG with broad substrate specificity.
    Chembazhi UV; Patil VV; Sah S; Reeve W; Tiwari RP; Woo E; Varshney U
    Nucleic Acids Res; 2017 Jun; 45(10):5863-5876. PubMed ID: 28369586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of a conserved phenylalanine residue to the activity of Escherichia coli uracil DNA glycosylase.
    Shaw RW; Feller JA; Bloom LB
    DNA Repair (Amst); 2004 Oct; 3(10):1273-83. PubMed ID: 15336623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of novel NADP-dependent 3-hydroxyisobutyrate dehydrogenase from Thermus thermophilus HB8.
    Lokanath NK; Ohshima N; Takio K; Shiromizu I; Kuroishi C; Okazaki N; Kuramitsu S; Yokoyama S; Miyano M; Kunishima N
    J Mol Biol; 2005 Sep; 352(4):905-17. PubMed ID: 16126223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective recognition of uracil and its derivatives using a DNA repair enzyme structural mimic.
    Jiang YL; Gao X; Zhou G; Patel A; Javer A
    J Org Chem; 2010 Jan; 75(2):324-33. PubMed ID: 20017469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.