These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 1787239)

  • 1. The effects of auditory feedback on the regulation of intraoral air pressure during speech.
    Moon JB; Folkins JW
    J Acoust Soc Am; 1991 Dec; 90(6):2992-9. PubMed ID: 1787239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensorimotor adaptation to feedback perturbations of vowel acoustics and its relation to perception.
    Villacorta VM; Perkell JS; Guenther FH
    J Acoust Soc Am; 2007 Oct; 122(4):2306-19. PubMed ID: 17902866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The control of aerodynamics, acoustics, and perceptual characteristics during speech production.
    Huber JE; Stathopoulos ET; Sussman JE
    J Acoust Soc Am; 2004 Oct; 116(4 Pt 1):2345-53. PubMed ID: 15532665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Velopharyngeal aerodynamics of /m/ and /p/ in tracheoesophageal speech.
    Searl JP; Evitts PM
    J Voice; 2004 Dec; 18(4):557-66. PubMed ID: 15567057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of short-term auditory deprivation on the control of intraoral pressure in pediatric cochlear implant users.
    Jones DL; Gao S; Svirsky MA
    J Speech Lang Hear Res; 2003 Jun; 46(3):658-69. PubMed ID: 14696993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responsiveness of single afferents in the infraorbital nerve to oral air pressures generated by consonants.
    Furusawa K; Yamaoka M; Ichikawa N
    Cleft Palate Craniofac J; 1994 May; 31(3):161-6. PubMed ID: 8068697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bilabial contact pressure and oral air pressure during tracheoesophageal speech.
    Searl J
    Ann Otol Rhinol Laryngol; 2007 Apr; 116(4):304-11. PubMed ID: 17491532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Respiratory constraints on speech production: starting an utterance.
    Slifka J
    J Acoust Soc Am; 2003 Dec; 114(6 Pt 1):3343-53. PubMed ID: 14714814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formant compensation for auditory feedback with English vowels.
    Mitsuya T; MacDonald EN; Munhall KG; Purcell DW
    J Acoust Soc Am; 2015 Jul; 138(1):413-24. PubMed ID: 26233040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of minimum oral tract constriction area in sibilant fricatives from aerodynamic data.
    Fujiso Y; Nozaki K; Van Hirtum A
    J Acoust Soc Am; 2015 Jul; 138(1):EL20-5. PubMed ID: 26233055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraoral air pressure as a feedback cue in consonant production.
    Prosek RA
    J Speech Hear Res; 1975 Mar; 18(1):133-47. PubMed ID: 1127898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of tongue loading and auditory feedback on vowel production.
    Leung MT; Ciocca V
    J Acoust Soc Am; 2011 Jan; 129(1):316-25. PubMed ID: 21303013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Respiratory and laryngeal responses to an oral air pressure bleed during speech.
    Huber JE; Stathopoulos ET
    J Speech Lang Hear Res; 2003 Oct; 46(5):1207-20. PubMed ID: 14575353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Mechanism and Representation of Korean Three-Way Phonation Contrast: External Photoglottography, Intra-Oral Air Pressure, Airflow, and Acoustic Data.
    Kim H; Maeda S; Honda K; Crevier-Buchman L
    Phonetica; 2018; 75(1):57-84. PubMed ID: 29212078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Susceptibility to delayed auditory feedback and dependence on auditory or oral sensory feedback.
    Burke BD
    J Commun Disord; 1975 Mar; 8(1):75-96. PubMed ID: 1159107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tongue-palate contact pressure, oral air pressure, and acoustics of clear speech.
    Searl J; Evitts PM
    J Speech Lang Hear Res; 2013 Jun; 56(3):826-39. PubMed ID: 23275402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating Vocal Effort from the Aerodynamics of Labial Fricatives: A Feasibility Study.
    Meynadier Y; El Hajj A; Pitermann M; Legou T; Giovanni A
    J Voice; 2018 Nov; 32(6):771.e15-771.e24. PubMed ID: 28916222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of Middle-Frequency Modulations in Vocal Fundamental Frequency to Different Vocal Intensities and Auditory Feedback.
    Lee SH; Fang TJ; Yu JF; Lee GS
    J Voice; 2017 Sep; 31(5):536-544. PubMed ID: 28268129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phonation threshold pressure measurement with a semi-occluded vocal tract.
    Titze IR
    J Speech Lang Hear Res; 2009 Aug; 52(4):1062-72. PubMed ID: 19641082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling changes in vocal tract resistance.
    Warren DW; Rochet AP; Dalston RM; Mayo R
    J Acoust Soc Am; 1992 May; 91(5):2947-53. PubMed ID: 1629487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.