These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 17872449)

  • 1. 4-Hydroxy-2-nonenal increases superoxide anion radical in endothelial cells via stimulated GTP cyclohydrolase proteasomal degradation.
    Whitsett J; Picklo MJ; Vasquez-Vivar J
    Arterioscler Thromb Vasc Biol; 2007 Nov; 27(11):2340-7. PubMed ID: 17872449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cigarette smoke constituents cause endothelial nitric oxide synthase dysfunction and uncoupling due to depletion of tetrahydrobiopterin with degradation of GTP cyclohydrolase.
    Abdelghany TM; Ismail RS; Mansoor FA; Zweier JR; Lowe F; Zweier JL
    Nitric Oxide; 2018 Jun; 76():113-121. PubMed ID: 29524646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endothelial cell superoxide anion radical generation is not dependent on endothelial nitric oxide synthase-serine 1179 phosphorylation and endothelial nitric oxide synthase dimer/monomer distribution.
    Whitsett J; Martásek P; Zhao H; Schauer DW; Hatakeyama K; Kalyanaraman B; Vásquez-Vivar J
    Free Radic Biol Med; 2006 Jun; 40(11):2056-68. PubMed ID: 16716906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative regulation of intracellular endothelial nitric-oxide synthase (eNOS) coupling by both tetrahydrobiopterin-eNOS stoichiometry and biopterin redox status: insights from cells with tet-regulated GTP cyclohydrolase I expression.
    Crabtree MJ; Tatham AL; Al-Wakeel Y; Warrick N; Hale AB; Cai S; Channon KM; Alp NJ
    J Biol Chem; 2009 Jan; 284(2):1136-44. PubMed ID: 19011239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute inhibition of guanosine triphosphate cyclohydrolase 1 uncouples endothelial nitric oxide synthase and elevates blood pressure.
    Wang S; Xu J; Song P; Wu Y; Zhang J; Chul Choi H; Zou MH
    Hypertension; 2008 Sep; 52(3):484-90. PubMed ID: 18645049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteasome-dependent degradation of guanosine 5'-triphosphate cyclohydrolase I causes tetrahydrobiopterin deficiency in diabetes mellitus.
    Xu J; Wu Y; Song P; Zhang M; Wang S; Zou MH
    Circulation; 2007 Aug; 116(8):944-53. PubMed ID: 17679617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical role for tetrahydrobiopterin recycling by dihydrofolate reductase in regulation of endothelial nitric-oxide synthase coupling: relative importance of the de novo biopterin synthesis versus salvage pathways.
    Crabtree MJ; Tatham AL; Hale AB; Alp NJ; Channon KM
    J Biol Chem; 2009 Oct; 284(41):28128-28136. PubMed ID: 19666465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apolipoprotein A-I mimetic peptide inhibits atherosclerosis by increasing tetrahydrobiopterin via regulation of GTP-cyclohydrolase 1 and reducing uncoupled endothelial nitric oxide synthase activity.
    Ning DS; Ma J; Peng YM; Li Y; Chen YT; Li SX; Liu Z; Li YQ; Zhang YX; Jian YP; Ou ZJ; Ou JS
    Atherosclerosis; 2021 Jul; 328():83-91. PubMed ID: 34118596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HMG-CoA reductase inhibitor increases GTP cyclohydrolase I mRNA and tetrahydrobiopterin in vascular endothelial cells.
    Hattori Y; Nakanishi N; Akimoto K; Yoshida M; Kasai K
    Arterioscler Thromb Vasc Biol; 2003 Feb; 23(2):176-82. PubMed ID: 12588756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tetrahydrobiopterin recycling, a key determinant of endothelial nitric-oxide synthase-dependent signaling pathways in cultured vascular endothelial cells.
    Sugiyama T; Levy BD; Michel T
    J Biol Chem; 2009 May; 284(19):12691-700. PubMed ID: 19286667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of reversal of high glucose-induced endothelial nitric oxide synthase uncoupling by tanshinone IIA in human endothelial cell line EA.hy926.
    Zhou ZW; Xie XL; Zhou SF; Li CG
    Eur J Pharmacol; 2012 Dec; 697(1-3):97-105. PubMed ID: 23063542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Augmented BH4 by gene transfer restores nitric oxide synthase function in hyperglycemic human endothelial cells.
    Cai S; Khoo J; Channon KM
    Cardiovasc Res; 2005 Mar; 65(4):823-31. PubMed ID: 15721862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of cerebral microvasculature in transgenic mice with endothelium targeted over-expression of GTP-cyclohydrolase I.
    Santhanam AV; d'Uscio LV; Katusic ZS
    Brain Res; 2015 Nov; 1625():198-205. PubMed ID: 26343845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GTP cyclohydrolase I gene transfer augments intracellular tetrahydrobiopterin in human endothelial cells: effects on nitric oxide synthase activity, protein levels and dimerisation.
    Cai S; Alp NJ; McDonald D; Smith I; Kay J; Canevari L; Heales S; Channon KM
    Cardiovasc Res; 2002 Sep; 55(4):838-49. PubMed ID: 12176133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen peroxide stimulates tetrahydrobiopterin synthesis through the induction of GTP-cyclohydrolase I and increases nitric oxide synthase activity in vascular endothelial cells.
    Shimizu S; Shiota K; Yamamoto S; Miyasaka Y; Ishii M; Watabe T; Nishida M; Mori Y; Yamamoto T; Kiuchi Y
    Free Radic Biol Med; 2003 May; 34(10):1343-52. PubMed ID: 12726922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erythropoietin increases bioavailability of tetrahydrobiopterin and protects cerebral microvasculature against oxidative stress induced by eNOS uncoupling.
    Santhanam AV; d'Uscio LV; Katusic ZS
    J Neurochem; 2014 Nov; 131(4):521-9. PubMed ID: 25041251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric-oxide synthase.
    Kuzkaya N; Weissmann N; Harrison DG; Dikalov S
    J Biol Chem; 2003 Jun; 278(25):22546-54. PubMed ID: 12692136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing tetrahydrobiopterin in cardiomyocytes adversely affects cardiac redox state and mitochondrial function independently of changes in NO production.
    Sethumadhavan S; Whitsett J; Bennett B; Ionova IA; Pieper GM; Vasquez-Vivar J
    Free Radic Biol Med; 2016 Apr; 93():1-11. PubMed ID: 26826575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GTP cyclohydrolase I phosphorylation and interaction with GTP cyclohydrolase feedback regulatory protein provide novel regulation of endothelial tetrahydrobiopterin and nitric oxide.
    Li L; Rezvan A; Salerno JC; Husain A; Kwon K; Jo H; Harrison DG; Chen W
    Circ Res; 2010 Feb; 106(2):328-36. PubMed ID: 19926872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effects of eNOS uncoupling on conduit and small arteries in GTP-cyclohydrolase I-deficient hph-1 mice.
    d'Uscio LV; Smith LA; Katusic ZS
    Am J Physiol Heart Circ Physiol; 2011 Dec; 301(6):H2227-34. PubMed ID: 21963838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.