These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 17872507)

  • 21. Crystal structures of the catalytic domains of pseudouridine synthases RluC and RluD from Escherichia coli.
    Mizutani K; Machida Y; Unzai S; Park SY; Tame JR
    Biochemistry; 2004 Apr; 43(15):4454-63. PubMed ID: 15078091
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pseudouridylation of 23S rRNA helix 69 promotes peptide release by release factor RF2 but not by release factor RF1.
    Kipper K; Sild S; Hetényi C; Remme J; Liiv A
    Biochimie; 2011 May; 93(5):834-44. PubMed ID: 21281690
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Suppressor analysis links trans-translation and ribosomal protein uS7 to RluD function in Escherichia coli.
    Clark ZS; O'Connor M
    Biochem Biophys Res Commun; 2024 Mar; 700():149584. PubMed ID: 38295647
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of conformational changes in helix 69 mutants by pseudouridine modifications.
    Jiang J; Kharel DN; Chow CS
    Biophys Chem; 2015; 200-201():48-55. PubMed ID: 25800680
    [TBL] [Abstract][Full Text] [Related]  

  • 25. YbeA is the m3Psi methyltransferase RlmH that targets nucleotide 1915 in 23S rRNA.
    Purta E; Kaminska KH; Kasprzak JM; Bujnicki JM; Douthwaite S
    RNA; 2008 Oct; 14(10):2234-44. PubMed ID: 18755835
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pseudouridylation of helix 69 of 23S rRNA is necessary for an effective translation termination.
    Ejby M; Sørensen MA; Pedersen S
    Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19410-5. PubMed ID: 18032607
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural Visualization of the Formation and Activation of the 50S Ribosomal Subunit during In Vitro Reconstitution.
    Nikolay R; Hilal T; Qin B; Mielke T; Bürger J; Loerke J; Textoris-Taube K; Nierhaus KH; Spahn CMT
    Mol Cell; 2018 Jun; 70(5):881-893.e3. PubMed ID: 29883607
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Snapshots of native pre-50S ribosomes reveal a biogenesis factor network and evolutionary specialization.
    Nikolay R; Hilal T; Schmidt S; Qin B; Schwefel D; Vieira-Vieira CH; Mielke T; Bürger J; Loerke J; Amikura K; Flügel T; Ueda T; Selbach M; Deuerling E; Spahn CMT
    Mol Cell; 2021 Mar; 81(6):1200-1215.e9. PubMed ID: 33639093
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Subribosomal particle analysis reveals the stages of bacterial ribosome assembly at which rRNA nucleotides are modified.
    Siibak T; Remme J
    RNA; 2010 Oct; 16(10):2023-32. PubMed ID: 20719918
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RNA Post-transcriptional Modifications of an Early-Stage Large-Subunit Ribosomal Intermediate.
    Narayan G; Gracia Mazuca LA; Cho SS; Mohl JE; Koculi E
    Biochemistry; 2023 Oct; 62(20):2908-2915. PubMed ID: 37751522
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Loss of a single methylation in 23S rRNA delays 50S assembly at multiple late stages and impairs translation initiation and elongation.
    Wang W; Li W; Ge X; Yan K; Mandava CS; Sanyal S; Gao N
    Proc Natl Acad Sci U S A; 2020 Jul; 117(27):15609-15619. PubMed ID: 32571953
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Persister cells resuscitate via ribosome modification by 23S rRNA pseudouridine synthase RluD.
    Song S; Wood TK
    Environ Microbiol; 2020 Mar; 22(3):850-857. PubMed ID: 31608580
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of two Escherichia coli pseudouridine synthases that show multisite specificity for 23S RNA.
    Huang L; Ku J; Pookanjanatavip M; Gu X; Wang D; Greene PJ; Santi DV
    Biochemistry; 1998 Nov; 37(45):15951-7. PubMed ID: 9843401
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure modulation of helix 69 from Escherichia coli 23S ribosomal RNA by pseudouridylations.
    Jiang J; Aduri R; Chow CS; SantaLucia J
    Nucleic Acids Res; 2014 Apr; 42(6):3971-81. PubMed ID: 24371282
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deletion of the RluD pseudouridine synthase promotes SsrA peptide tagging of ribosomal protein S7.
    Schaub RE; Hayes CS
    Mol Microbiol; 2011 Jan; 79(2):331-41. PubMed ID: 21219455
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The tandem GTPase, Der, is essential for the biogenesis of 50S ribosomal subunits in Escherichia coli.
    Hwang J; Inouye M
    Mol Microbiol; 2006 Sep; 61(6):1660-72. PubMed ID: 16930151
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cloning and characterization of the 23S RNA pseudouridine 2633 synthase from Bacillus subtilis.
    Niu L; Lane BG; Ofengand J
    Biochemistry; 1999 Jan; 38(2):629-35. PubMed ID: 9888802
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The sarcin-ricin loop of 23S rRNA is essential for assembly of the functional core of the 50S ribosomal subunit.
    Lancaster L; Lambert NJ; Maklan EJ; Horan LH; Noller HF
    RNA; 2008 Oct; 14(10):1999-2012. PubMed ID: 18755834
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro complementation analysis localizes 23S rRNA posttranscriptional modifications that are required for Escherichia coli 50S ribosomal subunit assembly and function.
    Green R; Noller HF
    RNA; 1996 Oct; 2(10):1011-21. PubMed ID: 8849777
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of pseudouridine methyltransferase in Escherichia coli.
    Ero R; Peil L; Liiv A; Remme J
    RNA; 2008 Oct; 14(10):2223-33. PubMed ID: 18755836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.