These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 17873074)

  • 1. An inducible propane monooxygenase is responsible for N-nitrosodimethylamine degradation by Rhodococcus sp. strain RHA1.
    Sharp JO; Sales CM; LeBlanc JC; Liu J; Wood TK; Eltis LD; Mohn WW; Alvarez-Cohen L
    Appl Environ Microbiol; 2007 Nov; 73(21):6930-8. PubMed ID: 17873074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional characterization of propane-enhanced N-nitrosodimethylamine degradation by two actinomycetales.
    Sharp JO; Sales CM; Alvarez-Cohen L
    Biotechnol Bioeng; 2010 Dec; 107(6):924-32. PubMed ID: 20717971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Proteomic Analysis of Propane Metabolism in Mycobacterium sp. Strain ENV421 and Rhodococcus sp. Strain ENV425.
    Tupa PR; Masuda H
    J Mol Microbiol Biotechnol; 2018; 28(3):107-115. PubMed ID: 30153684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cometabolic biodegradation of 1,2,3-trichloropropane by propane-oxidizing bacteria.
    Wang B; Chu KH
    Chemosphere; 2017 Feb; 168():1494-1497. PubMed ID: 27939660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential microbial transformation of nitrosamines by an inducible propane monooxygenase.
    Homme CL; Sharp JO
    Environ Sci Technol; 2013 Jul; 47(13):7388-95. PubMed ID: 23718280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ex situ treatment of N-nitrosodimethylamine (NDMA) in groundwater using a fluidized bed reactor.
    Webster TS; Condee C; Hatzinger PB
    Water Res; 2013 Feb; 47(2):811-20. PubMed ID: 23206498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological treatment of N-nitrosodimethylamine (NDMA) and N-nitrodimethylamine (NTDMA) in a field-scale fluidized bed bioreactor.
    Hatzinger PB; Lewis C; Webster TS
    Water Res; 2017 Dec; 126():361-371. PubMed ID: 28972939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerobic biodegradation of N-nitrosodimethylamine (NDMA) by axenic bacterial strains.
    Sharp JO; Wood TK; Alvarez-Cohen L
    Biotechnol Bioeng; 2005 Mar; 89(5):608-18. PubMed ID: 15672376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Assimilation of propane and properties of propan monooxygenase from Rhodococcus erythropolis 3/89].
    Kulikova AK; Bezborodov AM
    Prikl Biokhim Mikrobiol; 2001; 37(2):186-9. PubMed ID: 11357423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerobic biodegradation of N-nitrosodimethylamine by the propanotroph Rhodococcus ruber ENV425.
    Fournier D; Hawari J; Halasz A; Streger SH; McClay KR; Masuda H; Hatzinger PB
    Appl Environ Microbiol; 2009 Aug; 75(15):5088-93. PubMed ID: 19542346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of three propane-inducible oxygenases in Mycobacterium sp. strain ENV421.
    Masuda H; McClay K; Steffan RJ; Zylstra GJ
    Lett Appl Microbiol; 2012 Sep; 55(3):175-81. PubMed ID: 22803623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic assessment of isozymes in the biphenyl pathway of Rhodococcus sp. strain RHA1.
    Gonçalves ER; Hara H; Miyazawa D; Davies JE; Eltis LD; Mohn WW
    Appl Environ Microbiol; 2006 Sep; 72(9):6183-93. PubMed ID: 16957245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of N-nitrosodimethylamine and its amine precursors by cumene-induced Rhodococcus sp. strain L4.
    Na-Phatthalung W; Musikavong C; Suttinun O
    Biodegradation; 2019 Dec; 30(5-6):375-388. PubMed ID: 31089839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerobic treatment of N-nitrosodimethylamine in a propane-fed membrane bioreactor.
    Hatzinger PB; Condee C; McClay KR; Paul Togna A
    Water Res; 2011 Jan; 45(1):254-62. PubMed ID: 20701948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Horizontal Gene Transfer of Genes Encoding Copper-Containing Membrane-Bound Monooxygenase (CuMMO) and Soluble Di-iron Monooxygenase (SDIMO) in Ethane- and Propane-Oxidizing
    Zou B; Huang Y; Zhang PP; Ding XM; Op den Camp HJM; Quan ZX
    Appl Environ Microbiol; 2021 Jun; 87(14):e0022721. PubMed ID: 33962978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of growth substrate on triclosan biodegradation potential of oxygenase-expressing bacteria.
    Lee DG; Chu KH
    Chemosphere; 2013 Nov; 93(9):1904-11. PubMed ID: 23890965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction and carbon catabolite repression of phenol degradation genes in Rhodococcus erythropolis and Rhodococcus jostii.
    Szőköl J; Rucká L; Šimčíková M; Halada P; Nešvera J; Pátek M
    Appl Microbiol Biotechnol; 2014 Oct; 98(19):8267-79. PubMed ID: 24938209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of 4-nitrophenol oxidation in Rhodococcus sp. Strain PN1: characterization of the two-component 4-nitrophenol hydroxylase and regulation of its expression.
    Takeo M; Murakami M; Niihara S; Yamamoto K; Nishimura M; Kato D; Negoro S
    J Bacteriol; 2008 Nov; 190(22):7367-74. PubMed ID: 18805976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-based analysis for the identification of genes involved in o-xylene degradation in Rhodococcus opacus R7.
    Di Canito A; Zampolli J; Orro A; D'Ursi P; Milanesi L; Sello G; Steinbüchel A; Di Gennaro P
    BMC Genomics; 2018 Aug; 19(1):587. PubMed ID: 30081830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of 1,4-dioxane: effects of enzyme inducers and trichloroethylene.
    Hand S; Wang B; Chu KH
    Sci Total Environ; 2015 Jul; 520():154-9. PubMed ID: 25813968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.