These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 17873338)
1. Recent progress on the analysis of power-law features in complex cellular networks. Nacher JC; Akutsu T Cell Biochem Biophys; 2007; 49(1):37-47. PubMed ID: 17873338 [TBL] [Abstract][Full Text] [Related]
2. Evolutionary principles underlying structure and response dynamics of cellular networks. Steinacher A; Soyer OS Adv Exp Med Biol; 2012; 751():225-47. PubMed ID: 22821461 [TBL] [Abstract][Full Text] [Related]
3. New Markov-Shannon Entropy models to assess connectivity quality in complex networks: from molecular to cellular pathway, Parasite-Host, Neural, Industry, and Legal-Social networks. Riera-Fernández P; Munteanu CR; Escobar M; Prado-Prado F; Martín-Romalde R; Pereira D; Villalba K; Duardo-Sánchez A; González-Díaz H J Theor Biol; 2012 Jan; 293():174-88. PubMed ID: 22037044 [TBL] [Abstract][Full Text] [Related]
4. The powerful law of the power law and other myths in network biology. Lima-Mendez G; van Helden J Mol Biosyst; 2009 Dec; 5(12):1482-93. PubMed ID: 20023717 [TBL] [Abstract][Full Text] [Related]
5. Characterizing the topology of probabilistic biological networks. Todor A; Dobra A; Kahveci T IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(4):970-83. PubMed ID: 24334390 [TBL] [Abstract][Full Text] [Related]
6. Biological impacts and context of network theory. Almaas E J Exp Biol; 2007 May; 210(Pt 9):1548-58. PubMed ID: 17449819 [TBL] [Abstract][Full Text] [Related]
7. STON: exploring biological pathways using the SBGN standard and graph databases. Touré V; Mazein A; Waltemath D; Balaur I; Saqi M; Henkel R; Pellet J; Auffray C BMC Bioinformatics; 2016 Dec; 17(1):494. PubMed ID: 27919219 [TBL] [Abstract][Full Text] [Related]
8. Integrative content-driven concepts for bioinformatics "beyond the cell". Wingender E; Crass T; Hogan JD; Kel AE; Kel-Margoulis OV; Potapov AP J Biosci; 2007 Jan; 32(1):169-80. PubMed ID: 17426389 [TBL] [Abstract][Full Text] [Related]
14. Complexity of Biochemical and Genetic Responses Reduced Using Simple Theoretical Models. Selvarajoo K Methods Mol Biol; 2018; 1702():171-201. PubMed ID: 29119506 [TBL] [Abstract][Full Text] [Related]
15. Modeling complex metabolic reactions, ecological systems, and financial and legal networks with MIANN models based on Markov-Wiener node descriptors. Duardo-Sánchez A; Munteanu CR; Riera-Fernández P; López-Díaz A; Pazos A; González-Díaz H J Chem Inf Model; 2014 Jan; 54(1):16-29. PubMed ID: 24320872 [TBL] [Abstract][Full Text] [Related]
16. Renormalization group approach to power-law modeling of complex metabolic networks. Hernández-Bermejo B J Theor Biol; 2010 Aug; 265(3):422-32. PubMed ID: 20447410 [TBL] [Abstract][Full Text] [Related]
17. Computational modeling in systems biology. Vallabhajosyula RR; Raval A Methods Mol Biol; 2010; 662():97-120. PubMed ID: 20824468 [TBL] [Abstract][Full Text] [Related]
18. A survey on methods for modeling and analyzing integrated biological networks. Tenazinha N; Vinga S IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(4):943-58. PubMed ID: 21116043 [TBL] [Abstract][Full Text] [Related]
19. Assessment of crosstalks between the Snf1 kinase complex and sphingolipid metabolism in S. cerevisiae via systems biology approaches. Borklu Yucel E; Ulgen KO Mol Biosyst; 2013 Nov; 9(11):2914-31. PubMed ID: 24056632 [TBL] [Abstract][Full Text] [Related]
20. Functional motifs in biochemical reaction networks. Tyson JJ; Novák B Annu Rev Phys Chem; 2010; 61():219-40. PubMed ID: 20055671 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]