These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. The Berlin Brain--Computer Interface: accurate performance from first-session in BCI-naïve subjects. Blankertz B; Losch F; Krauledat M; Dornhege G; Curio G; Müller KR IEEE Trans Biomed Eng; 2008 Oct; 55(10):2452-62. PubMed ID: 18838371 [TBL] [Abstract][Full Text] [Related]
6. Continuous EEG classification during motor imagery--simulation of an asynchronous BCI. Townsend G; Graimann B; Pfurtscheller G IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):258-65. PubMed ID: 15218939 [TBL] [Abstract][Full Text] [Related]
7. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface. Neuper C; Scherer R; Wriessnegger S; Pfurtscheller G Clin Neurophysiol; 2009 Feb; 120(2):239-47. PubMed ID: 19121977 [TBL] [Abstract][Full Text] [Related]
8. Toward a hybrid brain-computer interface based on imagined movement and visual attention. Allison BZ; Brunner C; Kaiser V; Müller-Putz GR; Neuper C; Pfurtscheller G J Neural Eng; 2010 Apr; 7(2):26007. PubMed ID: 20332550 [TBL] [Abstract][Full Text] [Related]
9. Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG. Kaiser V; Bauernfeind G; Kreilinger A; Kaufmann T; Kübler A; Neuper C; Müller-Putz GR Neuroimage; 2014 Jan; 85 Pt 1():432-44. PubMed ID: 23651839 [TBL] [Abstract][Full Text] [Related]
10. Self-paced operation of an SSVEP-Based orthosis with and without an imagery-based "brain switch:" a feasibility study towards a hybrid BCI. Pfurtscheller G; Solis-Escalante T; Ortner R; Linortner P; Müller-Putz GR IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):409-14. PubMed ID: 20144923 [TBL] [Abstract][Full Text] [Related]
11. Development, set-up and first results for a one-channel near-infrared spectroscopy system. Bauernfeind G; Leeb R; Wriessnegger SC; Pfurtscheller G Biomed Tech (Berl); 2008 Feb; 53(1):36-43. PubMed ID: 18251709 [TBL] [Abstract][Full Text] [Related]
12. A BCI-based environmental controller for the motion-disabled. Gao X; Xu D; Cheng M; Gao S IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):137-40. PubMed ID: 12899256 [TBL] [Abstract][Full Text] [Related]
14. Online classification of single EEG trials during finger movements. Lehtonen J; Jylänki P; Kauhanen L; Sams M IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):713-20. PubMed ID: 18270008 [TBL] [Abstract][Full Text] [Related]
15. A cell-phone-based brain-computer interface for communication in daily life. Wang YT; Wang Y; Jung TP J Neural Eng; 2011 Apr; 8(2):025018. PubMed ID: 21436517 [TBL] [Abstract][Full Text] [Related]
16. Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness. Pichiorri F; De Vico Fallani F; Cincotti F; Babiloni F; Molinari M; Kleih SC; Neuper C; Kübler A; Mattia D J Neural Eng; 2011 Apr; 8(2):025020. PubMed ID: 21436514 [TBL] [Abstract][Full Text] [Related]
17. Neurofeedback-based motor imagery training for brain-computer interface (BCI). Hwang HJ; Kwon K; Im CH J Neurosci Methods; 2009 Apr; 179(1):150-6. PubMed ID: 19428521 [TBL] [Abstract][Full Text] [Related]
18. Exploring virtual environments with an EEG-based BCI through motor imagery. Leeb R; Scherer R; Keinrath C; Guger C; Pfurtscheller G Biomed Tech (Berl); 2005 Apr; 50(4):86-91. PubMed ID: 15884704 [TBL] [Abstract][Full Text] [Related]
19. The Wadsworth Center brain-computer interface (BCI) research and development program. Wolpaw JR; McFarland DJ; Vaughan TM; Schalk G IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):204-7. PubMed ID: 12899275 [TBL] [Abstract][Full Text] [Related]
20. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control. Huang D; Lin P; Fei DY; Chen X; Bai O J Neural Eng; 2009 Aug; 6(4):046005. PubMed ID: 19556679 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]