These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. Classification of prefrontal activity due to mental arithmetic and music imagery using hidden Markov models and frequency domain near-infrared spectroscopy. Power SD; Falk TH; Chau T J Neural Eng; 2010 Apr; 7(2):26002. PubMed ID: 20168001 [TBL] [Abstract][Full Text] [Related]
27. Classification of the intention to generate a shoulder versus elbow torque by means of a time-frequency synthesized spatial patterns BCI algorithm. Deng J; Yao J; Dewald JP J Neural Eng; 2005 Dec; 2(4):131-8. PubMed ID: 16317237 [TBL] [Abstract][Full Text] [Related]
28. An analysis of performance evaluation for motor-imagery based BCI. Thomas E; Dyson M; Clerc M J Neural Eng; 2013 Jun; 10(3):031001. PubMed ID: 23639955 [TBL] [Abstract][Full Text] [Related]
29. A brain-computer interface method combined with eye tracking for 3D interaction. Lee EC; Woo JC; Kim JH; Whang M; Park KR J Neurosci Methods; 2010 Jul; 190(2):289-98. PubMed ID: 20580646 [TBL] [Abstract][Full Text] [Related]
30. [EEG-based communication--a new concept for rehabilitative support in patients with severe motor impairment]. Neuper C; Müller GR; Staiger-Sälzer P; Skliris D; Kübler A; Birbaumer N; Pfurtscheller G Rehabilitation (Stuttg); 2003 Dec; 42(6):371-7. PubMed ID: 14677109 [TBL] [Abstract][Full Text] [Related]
31. EEG-based brain computer interface (BCI). Search for optimal electrode positions and frequency components. Pfurtscheller G; Flotzinger D; Pregenzer M; Wolpaw JR; McFarland D Med Prog Technol; 1995-1996; 21(3):111-21. PubMed ID: 8776708 [TBL] [Abstract][Full Text] [Related]
32. Towards a system-paced near-infrared spectroscopy brain-computer interface: differentiating prefrontal activity due to mental arithmetic and mental singing from the no-control state. Power SD; Kushki A; Chau T J Neural Eng; 2011 Dec; 8(6):066004. PubMed ID: 21975364 [TBL] [Abstract][Full Text] [Related]
33. Neuronal mechanisms underlying control of a brain-computer interface. Hinterberger T; Veit R; Wilhelm B; Weiskopf N; Vatine JJ; Birbaumer N Eur J Neurosci; 2005 Jun; 21(11):3169-81. PubMed ID: 15978025 [TBL] [Abstract][Full Text] [Related]
35. Generalized features for electrocorticographic BCIs. Shenoy P; Miller KJ; Ojemann JG; Rao RP IEEE Trans Biomed Eng; 2008 Jan; 55(1):273-80. PubMed ID: 18232371 [TBL] [Abstract][Full Text] [Related]
36. A fully on-line adaptive BCI. Vidaurre C; Schlögl A; Cabeza R; Scherer R; Pfurtscheller G IEEE Trans Biomed Eng; 2006 Jun; 53(6):1214-9. PubMed ID: 16761852 [TBL] [Abstract][Full Text] [Related]
37. Software platform for rapid prototyping of NIRS brain computer interfacing techniques. Matthews F; Soraghan C; Ward TE; Markham C; Pearlmutter BA Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4840-3. PubMed ID: 19163800 [TBL] [Abstract][Full Text] [Related]
38. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching. Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118 [TBL] [Abstract][Full Text] [Related]
39. Control of an electrical prosthesis with an SSVEP-based BCI. Müller-Putz GR; Pfurtscheller G IEEE Trans Biomed Eng; 2008 Jan; 55(1):361-4. PubMed ID: 18232384 [TBL] [Abstract][Full Text] [Related]