These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 17873430)

  • 1. An analysis of glutamate spillover on the N-methyl-D-aspartate receptors at the cerebellar glomerulus.
    Mitchell CS; Feng SS; Lee RH
    J Neural Eng; 2007 Sep; 4(3):276-82. PubMed ID: 17873430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic glutamate spillover increases NMDA receptor reliability at the cerebellar glomerulus.
    Mitchell CS; Lee RH
    J Theor Biol; 2011 Nov; 289():217-24. PubMed ID: 21884708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of slow glutamate diffusion and AMPA receptor activation in the cerebellar glomerulus.
    Saftenku EE
    J Theor Biol; 2005 Jun; 234(3):363-82. PubMed ID: 15784271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An evaluation of synapse independence.
    Barbour B
    J Neurosci; 2001 Oct; 21(20):7969-84. PubMed ID: 11588170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular glutamate diffusion determines the occupancy of glutamate receptors at CA1 synapses in the hippocampus.
    Kullmann DM; Min MY; Asztely F; Rusakov DA
    Philos Trans R Soc Lond B Biol Sci; 1999 Feb; 354(1381):395-402. PubMed ID: 10212489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Output-based comparison of alternative kinetic schemes for the NMDA receptor within a glutamate spillover model.
    Mitchell CS; Lee RH
    J Neural Eng; 2007 Dec; 4(4):380-9. PubMed ID: 18057505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model of dopamine modulated glutamatergic synapse.
    Di Maio V; Ventriglia F; Santillo S
    Biosystems; 2015 Oct; 136():59-65. PubMed ID: 26001676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LTP regulates burst initiation and frequency at mossy fiber-granule cell synapses of rat cerebellum: experimental observations and theoretical predictions.
    Nieus T; Sola E; Mapelli J; Saftenku E; Rossi P; D'Angelo E
    J Neurophysiol; 2006 Feb; 95(2):686-99. PubMed ID: 16207782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct quantal features of AMPA and NMDA synaptic currents in hippocampal neurons: implication of glutamate spillover and receptor saturation.
    Pankratov YV; Krishtal OA
    Biophys J; 2003 Nov; 85(5):3375-87. PubMed ID: 14581239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. L-2-chloropropionic acid inhibits glutamate and aspartate release from rat cerebellar slices but does not activate cerebellar NMDA receptors: implications for L-2-chloropropionic acid-induced neurotoxicity.
    Widdowson PS; Briggs I; BoSmith RE; Sturgess NC; Rosbottom A; Smith JC; Wyatt I
    Neurotoxicology; 1997; 18(1):169-77. PubMed ID: 9215999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Helping thy neighbors: spillover at the mossy fiber glomerulus.
    Otis T
    Neuron; 2002 Aug; 35(3):412-4. PubMed ID: 12165464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climbing Fiber-Mediated Spillover Transmission to Interneurons Is Regulated by EAAT4.
    Malhotra S; Banumurthy G; Pennock RL; Vaden JH; Sugihara I; Overstreet-Wadiche L; Wadiche JI
    J Neurosci; 2021 Sep; 41(39):8126-8133. PubMed ID: 34400517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extrasynaptic glutamate diffusion in the hippocampus: ultrastructural constraints, uptake, and receptor activation.
    Rusakov DA; Kullmann DM
    J Neurosci; 1998 May; 18(9):3158-70. PubMed ID: 9547224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of cleft glutamate concentration and glutamate spill-out by perisynaptic glia: uptake and diffusion barriers.
    Kessler JP
    PLoS One; 2013; 8(8):e70791. PubMed ID: 23951010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extrasynaptic glutamate spillover in the hippocampus: evidence and implications.
    Kullmann DM; Asztely F
    Trends Neurosci; 1998 Jan; 21(1):8-14. PubMed ID: 9464678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic trafficking of glutamate receptors by MAGUK scaffolding proteins.
    Elias GM; Nicoll RA
    Trends Cell Biol; 2007 Jul; 17(7):343-52. PubMed ID: 17644382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A plateau potential mediated by the activation of extrasynaptic NMDA receptors in rat hippocampal CA1 pyramidal neurons.
    Suzuki T; Kodama S; Hoshino C; Izumi T; Miyakawa H
    Eur J Neurosci; 2008 Aug; 28(3):521-34. PubMed ID: 18702724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deletion of the C-terminal domain of the NR2B subunit alters channel properties and synaptic targeting of N-methyl-D-aspartate receptors in nascent neocortical synapses.
    Mohrmann R; Köhr G; Hatt H; Sprengel R; Gottmann K
    J Neurosci Res; 2002 May; 68(3):265-75. PubMed ID: 12111856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamate spillover suppresses inhibition by activating presynaptic mGluRs.
    Mitchell SJ; Silver RA
    Nature; 2000 Mar; 404(6777):498-502. PubMed ID: 10761918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamate transporters bring competition to the synapse.
    Huang YH; Bergles DE
    Curr Opin Neurobiol; 2004 Jun; 14(3):346-52. PubMed ID: 15194115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.