These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 17873765)

  • 81. Evaluation of optimal Zernike radial degree for representing corneal surfaces.
    Omidi P; Cayless A; Langenbucher A
    PLoS One; 2022; 17(5):e0269119. PubMed ID: 35617340
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Corneal modeling.
    Gormley DJ; Gersten M; Koplin RS; Lubkin V
    Cornea; 1988; 7(1):30-5. PubMed ID: 3349789
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Development of a wide field height eye topographer: validation on models of the anterior eye surface.
    Jongsma FH; de Brabander J; Hendrikse F; Stultiens BA
    Optom Vis Sci; 1998 Jan; 75(1):69-77. PubMed ID: 9460789
    [TBL] [Abstract][Full Text] [Related]  

  • 84. The PAR Technology Corneal Topography System.
    Belin MW; Litoff D; Strods SJ; Winn SS; Smith RS
    Refract Corneal Surg; 1992; 8(1):88-96. PubMed ID: 1554645
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Corneal surface reconstruction algorithm using Zernike polynomial representation: improvements.
    Turuwhenua J
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jun; 24(6):1551-61. PubMed ID: 17491623
    [TBL] [Abstract][Full Text] [Related]  

  • 86. The recovery of posterior cornea and anterior lens radii by a novel ray-tracing method.
    Turuwhenua J; Henderson J
    Optom Vis Sci; 2004 Nov; 81(11):884-94. PubMed ID: 15545816
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Modeling of corneal surfaces with radial polynomials.
    Iskander DR; Morelande MR; Collins MJ; Davis B
    IEEE Trans Biomed Eng; 2002 Apr; 49(4):320-8. PubMed ID: 11942723
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Principles of operation, accuracy and precision of an Eye Surface Profiler.
    Iskander DR; Wachel P; Simpson PN; Consejo A; Jesus DA
    Ophthalmic Physiol Opt; 2016 May; 36(3):266-78. PubMed ID: 27112224
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Open-access operating algorithms for commercial videokeratographer and improvement of corneal sampling.
    Espinosa J; Mas D; Pérez J; Roig AB
    Appl Opt; 2013 Mar; 52(7):C24-9. PubMed ID: 23458813
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Analysis of cornea curvature using radial basis functions - Part I: Methodology.
    Griffiths GW; Płociniczak Ł; Schiesser WE
    Comput Biol Med; 2016 Oct; 77():274-84. PubMed ID: 27614697
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Graphic presentation of computer-analyzed keratoscope photographs.
    Maguire LJ; Singer DE; Klyce SD
    Arch Ophthalmol; 1987 Feb; 105(2):223-30. PubMed ID: 3813954
    [TBL] [Abstract][Full Text] [Related]  

  • 92. A spline surface algorithm for reconstruction of corneal topography from a videokeratographic reflection pattern.
    Halstead MA; Barsky BA; Klein SA; Mandell RB
    Optom Vis Sci; 1995 Nov; 72(11):821-7. PubMed ID: 8587771
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Corneo-scleral limbus demarcation from 3D height data.
    Consejo A; Iskander DR
    Cont Lens Anterior Eye; 2016 Dec; 39(6):450-457. PubMed ID: 27212670
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Corneal topographer based on the Hartmann test.
    Mejía Y; Galeano JC
    Optom Vis Sci; 2009 Apr; 86(4):370-81. PubMed ID: 19347999
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Representation of videokeratoscopic height data with Zernike polynomials.
    Schwiegerling J; Greivenkamp JE; Miller JM
    J Opt Soc Am A Opt Image Sci Vis; 1995 Oct; 12(10):2105-13. PubMed ID: 7500201
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Spatial modeling and classification of corneal shape.
    Marsolo K; Twa M; Bullimore MA; Parthasarathy S
    IEEE Trans Inf Technol Biomed; 2007 Mar; 11(2):203-12. PubMed ID: 17390990
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Development of an application for providing corneal topography reports based on artificial intelligence.
    Lucena AR; Araújo MO; Carneiro RFL; Cavalcante TDS; Ribeiro ABN; Anselmo FJM
    Arq Bras Oftalmol; 2021; 85(4):351-358. PubMed ID: 34852047
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Ocular microfluctuations and videokeratoscopy.
    Buehren T; Lee BJ; Collins MJ; Iskander DR
    Cornea; 2002 May; 21(4):346-51. PubMed ID: 11973380
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Specular surface reconstruction for multi-camera corneal topographer arrangements.
    Fazekas Z; Soumelidis A; Bodis-Szomoru A; Schipp F
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2254-7. PubMed ID: 19163148
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Approximation of surfaces in quantitative 3-D reconstructions.
    Mercer RR; McCauley GM; Anjilvel S
    IEEE Trans Biomed Eng; 1990 Dec; 37(12):1136-46. PubMed ID: 2289788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.