These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 17873926)

  • 1. C(n)(2) profile measurement from Shack-Hartmann data.
    Védrenne N; Michau V; Robert C; Conan JM
    Opt Lett; 2007 Sep; 32(18):2659-61. PubMed ID: 17873926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First on-sky results of the CO-SLIDAR C(2)(n) profiler.
    Voyez J; Robert C; Conan JM; Mugnier LM; Samain E; Ziad A
    Opt Express; 2014 May; 22(9):10948-67. PubMed ID: 24921793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptable Shack-Hartmann wavefront sensor with diffractive lenslet arrays to mitigate the effects of scintillation.
    Lechner D; Zepp A; Eichhorn M; Gładysz S
    Opt Express; 2020 Nov; 28(24):36188-36205. PubMed ID: 33379719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive Shack-Hartmann wavefront sensor accommodating large wavefront variations.
    Aftab M; Choi H; Liang R; Kim DW
    Opt Express; 2018 Dec; 26(26):34428-34441. PubMed ID: 30650864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atmospheric turbulence profiling with SLODAR using multiple adaptive optics wavefront sensors.
    Wang L; Schöck M; Chanan G
    Appl Opt; 2008 Apr; 47(11):1880-92. PubMed ID: 18404187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near ground horizontal high resolution
    Sauvage C; Robert C; Mugnier LM; Conan JM; Cohard JM; Nguyen KL; Irvine M; Lagouarde JP
    Appl Opt; 2021 Dec; 60(34):10499-10519. PubMed ID: 35200911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. More Zernike modes' open-loop measurement in the sub-aperture of the Shack-Hartmann wavefront sensor.
    Zhu Z; Mu Q; Li D; Yang C; Cao Z; Hu L; Xuan L
    Opt Express; 2016 Oct; 24(21):24611-24623. PubMed ID: 27828187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shack-Hartmann wavefront sensing based on binary-aberration-mode filtering.
    Wang S; Yang P; Xu B; Dong L; Ao M
    Opt Express; 2015 Feb; 23(4):5052-64. PubMed ID: 25836540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Branch-point identification using second-moment Shack-Hartmann wavefront sensor statistics.
    Kalensky M
    Appl Opt; 2023 Aug; 62(23):G101-G111. PubMed ID: 37707069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iterative wavefront reconstruction for strong turbulence using Shack-Hartmann wavefront sensor measurements.
    Kim JJ; Fernandez B; Agrawal B
    J Opt Soc Am A Opt Image Sci Vis; 2021 Mar; 38(3):456-464. PubMed ID: 33690478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Meta Shack-Hartmann wavefront sensor with large sampling density and large angular field of view: phase imaging of complex objects.
    Go GH; Lee DG; Oh J; Song G; Lee D; Jang M
    Light Sci Appl; 2024 Aug; 13(1):187. PubMed ID: 39134518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shack-Hartmann wavefront sensor with large dynamic range.
    Xia M; Li C; Hu L; Cao Z; Mu Q; Xuan L
    J Biomed Opt; 2010; 15(2):026009. PubMed ID: 20459254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convolutional neural network for improved event-based Shack-Hartmann wavefront reconstruction.
    Grose M; Schmidt JD; Hirakawa K
    Appl Opt; 2024 Jun; 63(16):E35-E47. PubMed ID: 38856590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing turbulence profile layers through celestial single-source observations.
    Laidlaw DJ; Reeves AP; Singhal H; Calvo RM
    Appl Opt; 2022 Jan; 61(2):498-504. PubMed ID: 35200889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring phase errors in the presence of scintillation.
    Crepp JR; Letchev SO; Potier SJ; Follansbee JH; Tusay NT
    Opt Express; 2020 Dec; 28(25):37721-37733. PubMed ID: 33379601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shack-Hartmann wavefront sensor with large dynamic range by adaptive spot search method.
    Shinto H; Saita Y; Nomura T
    Appl Opt; 2016 Jul; 55(20):5413-8. PubMed ID: 27409319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shack-Hartmann wavefront estimation with extended sources: anisoplanatism influence.
    Védrenne N; Michau V; Robert C; Conan JM
    J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2980-93. PubMed ID: 17767270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement in error propagation in the Shack-Hartmann-type zonal wavefront sensors.
    Pathak B; Boruah BR
    J Opt Soc Am A Opt Image Sci Vis; 2017 Dec; 34(12):2194-2202. PubMed ID: 29240094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aberration-resistible topological charge determination of annular-shaped optical vortex beams using Shack-Hartmann wavefront sensor.
    Wang D; Huang H; Matsui Y; Tanaka H; Toyoda H; Inoue T; Liu H
    Opt Express; 2019 Mar; 27(5):7803-7821. PubMed ID: 30876337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-Dynamic-Range Ocular Aberration Measurement Based on Deep Learning with a Shack-Hartmann Wavefront Sensor.
    Zhang H; Zhao J; Chen H; Zhang Z; Yin C; Wang S
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.