These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 17874212)

  • 1. The nonrandom distribution of long clusters of all possible classes of trinucleotide repeats in barley chromosomes.
    Cuadrado A; Jouve N
    Chromosome Res; 2007; 15(6):711-20. PubMed ID: 17874212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing the physical markers of wheat chromosomes using SSRs as FISH probes.
    Cuadrado A; Cardoso M; Jouve N
    Genome; 2008 Oct; 51(10):809-15. PubMed ID: 18923532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical organisation of simple sequence repeats (SSRs) in Triticeae: structural, functional and evolutionary implications.
    Cuadrado A; Cardoso M; Jouve N
    Cytogenet Genome Res; 2008; 120(3-4):210-9. PubMed ID: 18504349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel simple sequence repeats (SSRs) detected by ND-FISH in heterochromatin of Drosophila melanogaster.
    Cuadrado A; Jouve N
    BMC Genomics; 2011 Apr; 12():205. PubMed ID: 21521504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Similarities in the chromosomal distribution of AG and AC repeats within and between Drosophila, human and barley chromosomes.
    Cuadrado A; Jouve N
    Cytogenet Genome Res; 2007; 119(1-2):91-9. PubMed ID: 18160787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromosomal organization of repetitive DNAs in
    Dou Q; Liu R; Yu F
    Comp Cytogenet; 2016; 10(4):465-481. PubMed ID: 28123672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome and chromosome identification in cultivated barley and related species of the Triticeae (Poaceae) by in situ hybridization with the GAA-satellite sequence.
    Pedersen C; Rasmussen SK; Linde-Laursen I
    Genome; 1996 Feb; 39(1):93-104. PubMed ID: 8851798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley.
    La Rota M; Kantety RV; Yu JK; Sorrells ME
    BMC Genomics; 2005 Feb; 6():23. PubMed ID: 15720707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oligonucleotides and ND-FISH Displaying Different Arrangements of Tandem Repeats and Identification of Dasypyrum villosum Chromosomes in Wheat Backgrounds.
    Xiao Z; Tang S; Qiu L; Tang Z; Fu S
    Molecules; 2017 Jun; 22(6):. PubMed ID: 28613230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytogenetic diversity of SSR motifs within and between Hordeum species carrying the H genome: H. vulgare L. and H. bulbosum L.
    Carmona A; Friero E; de Bustos A; Jouve N; Cuadrado A
    Theor Appl Genet; 2013 Apr; 126(4):949-61. PubMed ID: 23242107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-density fluorescence in situ hybridization signal detection on barley (Hordeum vulgare L.) chromosomes with improved probe screening and reprobing procedures.
    Kato A
    Genome; 2011 Feb; 54(2):151-9. PubMed ID: 21326371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlating the Genetic and Physical Map of Barley Chromosome 3H Revealed Limitations of the FISH-Based Mapping of Nearby Single-Copy Probes Caused by the Dynamic Structure of Metaphase Chromosomes.
    Bustamante FO; Aliyeva-Schnorr L; Fuchs J; Beier S; Houben A
    Cytogenet Genome Res; 2017; 152(2):90-96. PubMed ID: 28719910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic differentiation of Hordeum chilense from H. vulgare as revealed by repetitive and EST sequences.
    Hagras AA; Kishii M; Tanaka H; Sato K; Tsujimoto H
    Genes Genet Syst; 2005 Jun; 80(3):147-59. PubMed ID: 16172528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of chromosomal polymorphism in barley (Hordeum vulgare L. ssp. vulgare) and between H. vulgare and H. chilense using three-color fluorescence in situ hybridization (FISH).
    Szakács É; Kruppa K; Molnár-Láng M
    J Appl Genet; 2013 Nov; 54(4):427-33. PubMed ID: 23990510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of rDNAs and tandem repeats in the heterochromatin of Brassica rapa.
    Lim KB; de Jong H; Yang TJ; Park JY; Kwon SJ; Kim JS; Lim MH; Kim JA; Jin M; Jin YM; Kim SH; Lim YP; Bang JW; Kim HI; Park BS
    Mol Cells; 2005 Jun; 19(3):436-44. PubMed ID: 15995362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive molecular cytogenetic analysis of sorghum genome architecture: distribution of euchromatin, heterochromatin, genes and recombination in comparison to rice.
    Kim JS; Islam-Faridi MN; Klein PE; Stelly DM; Price HJ; Klein RR; Mullet JE
    Genetics; 2005 Dec; 171(4):1963-76. PubMed ID: 16143604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synteny between Brachypodium distachyon and Hordeum vulgare as revealed by FISH.
    Ma L; Vu GT; Schubert V; Watanabe K; Stein N; Houben A; Schubert I
    Chromosome Res; 2010 Nov; 18(7):841-50. PubMed ID: 21104310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The chromosomal organization of simple sequence repeats in wheat and rye genomes.
    Cuadrado A; Schwarzacher T
    Chromosoma; 1998 Dec; 107(8):587-94. PubMed ID: 9933412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytogenetic mapping with centromeric bacterial artificial chromosomes contigs shows that this recombination-poor region comprises more than half of barley chromosome 3H.
    Aliyeva-Schnorr L; Beier S; Karafiátová M; Schmutzer T; Scholz U; Doležel J; Stein N; Houben A
    Plant J; 2015 Oct; 84(2):385-94. PubMed ID: 26332657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple repetitive DNA sequences in the paracentromeric regions of Arabidopsis thaliana L.
    Brandes A; Thompson H; Dean C; Heslop-Harrison JS
    Chromosome Res; 1997 Jun; 5(4):238-46. PubMed ID: 9244451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.