These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 17874226)
21. [A study of bone-like apatite formation on calcium phosphate ceramics in different kinds of animals in vivo]. Duan Y; Wu Y; Wang C; Chen J; Zhang X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Mar; 20(1):22-5. PubMed ID: 12744154 [TBL] [Abstract][Full Text] [Related]
22. A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo. Xin R; Leng Y; Chen J; Zhang Q Biomaterials; 2005 Nov; 26(33):6477-86. PubMed ID: 15992923 [TBL] [Abstract][Full Text] [Related]
23. Early weight bearing of porous HA/TCP (60/40) ceramics in vivo: a longitudinal study in a segmental bone defect model of rabbit. Balçik C; Tokdemir T; Senköylü A; Koç N; Timuçin M; Akin S; Korkusuz P; Korkusuz F Acta Biomater; 2007 Nov; 3(6):985-96. PubMed ID: 17574942 [TBL] [Abstract][Full Text] [Related]
24. Formation of osteoclast-like cells on HA and TCP ceramics. Detsch R; Mayr H; Ziegler G Acta Biomater; 2008 Jan; 4(1):139-48. PubMed ID: 17723325 [TBL] [Abstract][Full Text] [Related]
25. A comparison of bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) implanted in muscle and bone of dogs at different time periods. Yuan H; van Blitterswijk CA; de Groot K; de Bruijn JD J Biomed Mater Res A; 2006 Jul; 78(1):139-47. PubMed ID: 16619253 [TBL] [Abstract][Full Text] [Related]
26. Evaluation of the expression of collagen type I in porous calcium phosphate ceramics implanted in an extra-osseous site. Qu SX; Guo X; Weng J; Cheng JC; Feng B; Yeung HY; Zhang XD Biomaterials; 2004 Feb; 25(4):659-67. PubMed ID: 14607504 [TBL] [Abstract][Full Text] [Related]
27. Effect of water glass coating of tricalcium phosphate granules on in vivo bone formation. Ryu SM; Ahn MW; Park CH; Lee GW; Song IH; Ahn HS; Kim J; Kim S J Biomater Appl; 2018 Nov; 33(5):662-672. PubMed ID: 30396326 [TBL] [Abstract][Full Text] [Related]
28. [The effect of a simulated inflammation procedure in simulated body fluid on bone-like apatite formation on porous HA/beta-TCP bioceramics]. Ji J; Ran J; Gou L; Wang F; Sun L Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):531-5. PubMed ID: 15357425 [TBL] [Abstract][Full Text] [Related]
29. Influence of platelet-rich plasma on osteogenic differentiation of mesenchymal stem cells and ectopic bone formation in calcium phosphate ceramics. Kasten P; Vogel J; Luginbühl R; Niemeyer P; Weiss S; Schneider S; Kramer M; Leo A; Richter W Cells Tissues Organs; 2006; 183(2):68-79. PubMed ID: 17053323 [TBL] [Abstract][Full Text] [Related]
30. Comparative evaluation of three calcium phosphate synthetic block bone graft materials for bone regeneration in rabbit calvaria. Hwang JW; Park JS; Lee JS; Jung UW; Kim CS; Cho KS; Lee YK; Choi SH J Biomed Mater Res B Appl Biomater; 2012 Nov; 100(8):2044-52. PubMed ID: 22865716 [TBL] [Abstract][Full Text] [Related]
31. Inflammatory response and bone healing capacity of two porous calcium phosphate ceramics in critical size cortical bone defects. Chatterjea A; van der Stok J; Danoux CB; Yuan H; Habibovic P; van Blitterswijk CA; Weinans H; de Boer J J Biomed Mater Res A; 2014 May; 102(5):1399-407. PubMed ID: 23733500 [TBL] [Abstract][Full Text] [Related]
32. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Mastrogiacomo M; Scaglione S; Martinetti R; Dolcini L; Beltrame F; Cancedda R; Quarto R Biomaterials; 2006 Jun; 27(17):3230-7. PubMed ID: 16488007 [TBL] [Abstract][Full Text] [Related]
33. Bone regeneration of porous beta-tricalcium phosphate (Conduit TCP) and of biphasic calcium phosphate ceramic (Biosel) in trabecular defects in sheep. Bodde EW; Wolke JG; Kowalski RS; Jansen JA J Biomed Mater Res A; 2007 Sep; 82(3):711-22. PubMed ID: 17326225 [TBL] [Abstract][Full Text] [Related]
34. A new iron calcium phosphate material to improve the osteoconductive properties of a biodegradable ceramic: a study in rabbit calvaria. Manchón A; Hamdan Alkhraisat M; Rueda-Rodriguez C; Prados-Frutos JC; Torres J; Lucas-Aparicio J; Ewald A; Gbureck U; López-Cabarcos E Biomed Mater; 2015 Oct; 10(5):055012. PubMed ID: 26481113 [TBL] [Abstract][Full Text] [Related]
35. In vivo behaviour of two different biphasic ceramic implanted in mandibular bone of dogs. Fariña NM; Guzón FM; Peña ML; Cantalapiedra AG J Mater Sci Mater Med; 2008 Apr; 19(4):1565-73. PubMed ID: 18299963 [TBL] [Abstract][Full Text] [Related]
36. Mechanical and Biocompatibility Properties of Calcium Phosphate Bioceramics Derived from Salmon Fish Bone Wastes. Bas M; Daglilar S; Kuskonmaz N; Kalkandelen C; Erdemir G; Kuruca SE; Tulyaganov D; Yoshioka T; Gunduz O; Ficai D; Ficai A Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33138182 [TBL] [Abstract][Full Text] [Related]
37. Effect of various properties of hydroxyapatite ceramics on osteoconduction and stability. Kurioka K; Umeda M; Teranobu O; Komori T Kobe J Med Sci; 1999 Aug; 45(3-4):149-63. PubMed ID: 10752309 [TBL] [Abstract][Full Text] [Related]
38. Degradation and silicon excretion of the calcium silicate bioactive ceramics during bone regeneration using rabbit femur defect model. Lin K; Liu Y; Huang H; Chen L; Wang Z; Chang J J Mater Sci Mater Med; 2015 Jun; 26(6):197. PubMed ID: 26099345 [TBL] [Abstract][Full Text] [Related]
39. Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration. Tang Y; Wu C; Wu Z; Hu L; Zhang W; Zhao K Sci Rep; 2017 Feb; 7():43360. PubMed ID: 28240268 [TBL] [Abstract][Full Text] [Related]
40. Histologic effect of pure-phase beta-tricalcium phosphate on bone regeneration in human artificial jawbone defects. Trisi P; Rao W; Rebaudi A; Fiore P Int J Periodontics Restorative Dent; 2003 Feb; 23(1):69-77. PubMed ID: 12617370 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]