These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 17874311)

  • 1. Leachable 226Ra in Philippine phosphogypsum and its implication in groundwater contamination in Isabel, Leyte, Philippines.
    Cañete SJ; Palad LJ; Enriquez EB; Garcia TY; Yulo-Nazarea T
    Environ Monit Assess; 2008 Jul; 142(1-3):337-44. PubMed ID: 17874311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigations on the activity concentrations of 238U, 226RA, 228RA, 210PB and 40K in Jordan phosphogypsum and fertilizers.
    Al-Jundi J; Al-Ahmad N; Shehadeh H; Afaneh F; Maghrabi M; Gerstmann U; Höllriegl V; Oeh U
    Radiat Prot Dosimetry; 2008; 131(4):449-54. PubMed ID: 18701517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiological impacts of phosphogypsum.
    Al Attar L; Al-Oudat M; Kanakri S; Budeir Y; Khalily H; Al Hamwi A
    J Environ Manage; 2011 Sep; 92(9):2151-8. PubMed ID: 21530064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MEASUREMENT OF AMBIENT GAMMA DOSE RATES ALONG TWO INDUSTRIAL FACILITIES IN LEYTE ISLAND, PHILIPPINES.
    Palad LJ; Mendoza C; Dela Cruz F; Olivares J; Cruz PT; Iwaoka K
    Radiat Prot Dosimetry; 2019 Oct; 184(3-4):351-354. PubMed ID: 31330018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The application of phosphogypsum in agriculture and the radiological impact.
    Papastefanou C; Stoulos S; Ioannidou A; Manolopoulou M
    J Environ Radioact; 2006; 89(2):188-98. PubMed ID: 16806608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of natural radioactivity in phosphate ore, phosphogypsum and soil samples around a phosphate fertilizer plant in Nigeria.
    Okeji MC; Agwu KK; Idigo FU
    Bull Environ Contam Toxicol; 2012 Nov; 89(5):1078-81. PubMed ID: 22965334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissolution characteristics of 226Ra from phosphogypsum.
    Haridasan PP; Maniyan CG; Pillai PM; Khan AH
    J Environ Radioact; 2002; 62(3):287-94. PubMed ID: 12164633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radioactive characterization of phosphogypsum from Imbituba, Brazil.
    Borges RC; Ribeiro FC; Lauria Dda C; Bernedo AV
    J Environ Radioact; 2013 Dec; 126():188-95. PubMed ID: 24051335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphogypsum amendment effect on radionuclide content in drainage water and marsh soils from southwestern Spain.
    El-Mrabet R; Abril JM; Periáñez R; Manjón G; García-Tenorio R; Delgado A; Andreu L
    J Environ Qual; 2003; 32(4):1262-8. PubMed ID: 12931881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential radiological impact of the phosphate industry in South Africa on the public and the environment (Paper 1).
    Louw I
    J Environ Radioact; 2020 Jun; 217():106214. PubMed ID: 32217246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partitioning of radionuclides and trace elements in phosphogypsum and its source materials based on sequential extraction methods.
    Santos AJ; Mazzilli BP; Fávaro DI; Silva PS
    J Environ Radioact; 2006; 87(1):52-61. PubMed ID: 16375997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radionuclides, trace elements, and radium residence in phosphogypsum of Jordan.
    Zielinski RA; Al-Hwaiti MS; Budahn JR; Ranville JF
    Environ Geochem Health; 2011 Apr; 33(2):149-65. PubMed ID: 20623320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural radioactivity in phosphates, phosphogypsum and natural waters in Morocco.
    Azouazi M; Ouahidi Y; Fakhi S; Andres Y; Abbe JC; Benmansour M
    J Environ Radioact; 2001; 54(2):231-42. PubMed ID: 11378917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of phosphogypsum and NPK amendments on the retention or leaching of metals in different soils.
    Ammar R; Kanbar HJ; Kazpard V; Wazne M; El Samrani AG; Amacha N; Saad Z; Chou L
    J Environ Manage; 2016 Aug; 178():20-29. PubMed ID: 27131954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of simulated acid rain on fluorine mobility and the bacterial community of phosphogypsum.
    Wang M; Tang Y; Anderson CWN; Jeyakumar P; Yang J
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):15336-15348. PubMed ID: 29564699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of natural radionuclides mobility in a phosphogypsum disposal area.
    Pérez-Moreno SM; Gázquez MJ; Pérez-López R; Vioque I; Bolívar JP
    Chemosphere; 2018 Nov; 211():775-783. PubMed ID: 30099162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of phosphogypsum waste produced from phosphate ore processing.
    El-Didamony H; Gado HS; Awwad NS; Fawzy MM; Attallah MF
    J Hazard Mater; 2013 Jan; 244-245():596-602. PubMed ID: 23195600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lixiviation of natural radionuclides and heavy metals in tropical soils amended with phosphogypsum.
    Nisti MB; Saueia CR; Malheiro LH; Groppo GH; Mazzilli BP
    J Environ Radioact; 2015 Jun; 144():120-6. PubMed ID: 25841114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The potential radiological impact from a Brazilian phosphate facility.
    Glória dos Reis R; da Costa Lauria D
    J Environ Radioact; 2014 Oct; 136():188-94. PubMed ID: 24971522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer characteristic of fluorine from atmospheric dry deposition, fertilizers, pesticides, and phosphogypsum into soil.
    Cui SF; Fu YZ; Zhou BQ; Li JX; He WY; Yu YQ; Yang JY
    Chemosphere; 2021 Sep; 278():130432. PubMed ID: 33839389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.