BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 17874311)

  • 1. Leachable 226Ra in Philippine phosphogypsum and its implication in groundwater contamination in Isabel, Leyte, Philippines.
    Cañete SJ; Palad LJ; Enriquez EB; Garcia TY; Yulo-Nazarea T
    Environ Monit Assess; 2008 Jul; 142(1-3):337-44. PubMed ID: 17874311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigations on the activity concentrations of 238U, 226RA, 228RA, 210PB and 40K in Jordan phosphogypsum and fertilizers.
    Al-Jundi J; Al-Ahmad N; Shehadeh H; Afaneh F; Maghrabi M; Gerstmann U; Höllriegl V; Oeh U
    Radiat Prot Dosimetry; 2008; 131(4):449-54. PubMed ID: 18701517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiological impacts of phosphogypsum.
    Al Attar L; Al-Oudat M; Kanakri S; Budeir Y; Khalily H; Al Hamwi A
    J Environ Manage; 2011 Sep; 92(9):2151-8. PubMed ID: 21530064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MEASUREMENT OF AMBIENT GAMMA DOSE RATES ALONG TWO INDUSTRIAL FACILITIES IN LEYTE ISLAND, PHILIPPINES.
    Palad LJ; Mendoza C; Dela Cruz F; Olivares J; Cruz PT; Iwaoka K
    Radiat Prot Dosimetry; 2019 Oct; 184(3-4):351-354. PubMed ID: 31330018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The application of phosphogypsum in agriculture and the radiological impact.
    Papastefanou C; Stoulos S; Ioannidou A; Manolopoulou M
    J Environ Radioact; 2006; 89(2):188-98. PubMed ID: 16806608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of natural radioactivity in phosphate ore, phosphogypsum and soil samples around a phosphate fertilizer plant in Nigeria.
    Okeji MC; Agwu KK; Idigo FU
    Bull Environ Contam Toxicol; 2012 Nov; 89(5):1078-81. PubMed ID: 22965334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissolution characteristics of 226Ra from phosphogypsum.
    Haridasan PP; Maniyan CG; Pillai PM; Khan AH
    J Environ Radioact; 2002; 62(3):287-94. PubMed ID: 12164633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radioactive characterization of phosphogypsum from Imbituba, Brazil.
    Borges RC; Ribeiro FC; Lauria Dda C; Bernedo AV
    J Environ Radioact; 2013 Dec; 126():188-95. PubMed ID: 24051335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphogypsum amendment effect on radionuclide content in drainage water and marsh soils from southwestern Spain.
    El-Mrabet R; Abril JM; Periáñez R; Manjón G; García-Tenorio R; Delgado A; Andreu L
    J Environ Qual; 2003; 32(4):1262-8. PubMed ID: 12931881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential radiological impact of the phosphate industry in South Africa on the public and the environment (Paper 1).
    Louw I
    J Environ Radioact; 2020 Jun; 217():106214. PubMed ID: 32217246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partitioning of radionuclides and trace elements in phosphogypsum and its source materials based on sequential extraction methods.
    Santos AJ; Mazzilli BP; Fávaro DI; Silva PS
    J Environ Radioact; 2006; 87(1):52-61. PubMed ID: 16375997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radionuclides, trace elements, and radium residence in phosphogypsum of Jordan.
    Zielinski RA; Al-Hwaiti MS; Budahn JR; Ranville JF
    Environ Geochem Health; 2011 Apr; 33(2):149-65. PubMed ID: 20623320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural radioactivity in phosphates, phosphogypsum and natural waters in Morocco.
    Azouazi M; Ouahidi Y; Fakhi S; Andres Y; Abbe JC; Benmansour M
    J Environ Radioact; 2001; 54(2):231-42. PubMed ID: 11378917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of phosphogypsum and NPK amendments on the retention or leaching of metals in different soils.
    Ammar R; Kanbar HJ; Kazpard V; Wazne M; El Samrani AG; Amacha N; Saad Z; Chou L
    J Environ Manage; 2016 Aug; 178():20-29. PubMed ID: 27131954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of simulated acid rain on fluorine mobility and the bacterial community of phosphogypsum.
    Wang M; Tang Y; Anderson CWN; Jeyakumar P; Yang J
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):15336-15348. PubMed ID: 29564699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of natural radionuclides mobility in a phosphogypsum disposal area.
    Pérez-Moreno SM; Gázquez MJ; Pérez-López R; Vioque I; Bolívar JP
    Chemosphere; 2018 Nov; 211():775-783. PubMed ID: 30099162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of phosphogypsum waste produced from phosphate ore processing.
    El-Didamony H; Gado HS; Awwad NS; Fawzy MM; Attallah MF
    J Hazard Mater; 2013 Jan; 244-245():596-602. PubMed ID: 23195600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lixiviation of natural radionuclides and heavy metals in tropical soils amended with phosphogypsum.
    Nisti MB; Saueia CR; Malheiro LH; Groppo GH; Mazzilli BP
    J Environ Radioact; 2015 Jun; 144():120-6. PubMed ID: 25841114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The potential radiological impact from a Brazilian phosphate facility.
    Glória dos Reis R; da Costa Lauria D
    J Environ Radioact; 2014 Oct; 136():188-94. PubMed ID: 24971522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer characteristic of fluorine from atmospheric dry deposition, fertilizers, pesticides, and phosphogypsum into soil.
    Cui SF; Fu YZ; Zhou BQ; Li JX; He WY; Yu YQ; Yang JY
    Chemosphere; 2021 Sep; 278():130432. PubMed ID: 33839389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.