BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 17874460)

  • 1. Nitric oxide release from a single cell affects filopodial motility on growth cones of neighboring neurons.
    Tornieri K; Rehder V
    Dev Neurobiol; 2007 Dec; 67(14):1932-43. PubMed ID: 17874460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local activation of the nitric oxide/cyclic guanosine monophosphate pathway in growth cones regulates filopodial length via protein kinase G, cyclic ADP ribose and intracellular Ca2+ release.
    Welshhans K; Rehder V
    Eur J Neurosci; 2005 Dec; 22(12):3006-16. PubMed ID: 16367767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide regulates growth cone filopodial dynamics via ryanodine receptor-mediated calcium release.
    Welshhans K; Rehder V
    Eur J Neurosci; 2007 Sep; 26(6):1537-47. PubMed ID: 17714493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of growth cone filopodial length by carbon monoxide.
    Estes S; Artinian L; Rehder V
    Dev Neurobiol; 2017 Jun; 77(6):677-690. PubMed ID: 27513310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation-induced changes in filopodial dynamics determine the action radius of growth cones in the snail Helisoma trivolvis.
    Van Wagenen S; Cheng S; Rehder V
    Cell Motil Cytoskeleton; 1999 Dec; 44(4):248-62. PubMed ID: 10602254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of neuronal growth cone filopodia by nitric oxide depends on soluble guanylyl cyclase.
    Van Wagenen S; Rehder V
    J Neurobiol; 2001 Feb; 46(3):206-19. PubMed ID: 11169506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of neuronal growth cone filopodia by nitric oxide.
    Van Wagenen S; Rehder V
    J Neurobiol; 1999 May; 39(2):168-85. PubMed ID: 10235672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PLA2 and secondary metabolites of arachidonic acid control filopodial behavior in neuronal growth cones.
    Geddis MS; Tornieri K; Giesecke A; Rehder V
    Cell Motil Cytoskeleton; 2004 Jan; 57(1):53-67. PubMed ID: 14648557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide acts as a slow-down and search signal in developing neurites.
    Trimm KR; Rehder V
    Eur J Neurosci; 2004 Feb; 19(4):809-18. PubMed ID: 15009128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acetylcholine elongates neuronal growth cone filopodia via activation of nicotinic acetylcholine receptors.
    Zhong LR; Estes S; Artinian L; Rehder V
    Dev Neurobiol; 2013 Jul; 73(7):487-501. PubMed ID: 23335470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filopodial behavior is dependent on the phosphorylation state of neuronal growth cones.
    Cheng S; Mao J; Rehder V
    Cell Motil Cytoskeleton; 2000 Dec; 47(4):337-50. PubMed ID: 11093253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of neurite outgrowth and growth cone motility by phosphatidylinositol-3-kinase.
    Tornieri K; Welshhans K; Geddis MS; Rehder V
    Cell Motil Cytoskeleton; 2006 Apr; 63(4):173-92. PubMed ID: 16463277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide acts as a volume transmitter to modulate electrical properties of spontaneously firing neurons via apamin-sensitive potassium channels.
    Artinian L; Tornieri K; Zhong L; Baro D; Rehder V
    J Neurosci; 2010 Feb; 30(5):1699-711. PubMed ID: 20130179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. p75 neurotrophin receptor signaling regulates growth cone filopodial dynamics through modulating RhoA activity.
    Gehler S; Gallo G; Veien E; Letourneau PC
    J Neurosci; 2004 May; 24(18):4363-72. PubMed ID: 15128850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of action potentials in determining neuron-type-specific responses to nitric oxide.
    Estes S; Zhong LR; Artinian L; Tornieri K; Rehder V
    Dev Neurobiol; 2015 May; 75(5):435-51. PubMed ID: 25251837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The phosphorylation state of neuronal processes determines growth cone formation after neuronal injury.
    Geddis MS; Rehder V
    J Neurosci Res; 2003 Oct; 74(2):210-20. PubMed ID: 14515350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local calcium changes regulate the length of growth cone filopodia.
    Cheng S; Geddis MS; Rehder V
    J Neurobiol; 2002 Mar; 50(4):263-75. PubMed ID: 11891662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of the glutamate-induced K(+) current in identified Onchidium neurons by nitric oxide donors.
    Sawada M; Ichinose M; Anraku M
    J Neurosci Res; 2000 Jun; 60(5):642-8. PubMed ID: 10820435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmitter-receptor interactions between growth cones of identified Lymnaea neurons determine target cell selection in vitro.
    Spencer GE; Lukowiak K; Syed NI
    J Neurosci; 2000 Nov; 20(21):8077-86. PubMed ID: 11050129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formin 2 regulates the stabilization of filopodial tip adhesions in growth cones and affects neuronal outgrowth and pathfinding in vivo.
    Sahasrabudhe A; Ghate K; Mutalik S; Jacob A; Ghose A
    Development; 2016 Feb; 143(3):449-60. PubMed ID: 26718007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.