These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 17874779)

  • 1. Impact of microbial activities on the mineralogy and performance of column-scale permeable reactive iron barriers operated under two different redox conditions.
    Van Nooten T; Lieben F; Dries J; Pirard E; Springael D; Bastiaens L
    Environ Sci Technol; 2007 Aug; 41(16):5724-30. PubMed ID: 17874779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial and mineral evolution in zero valent iron-based permeable reactive barriers during long-term operations.
    Kumar N; Millot R; Battaglia-Brunet F; Omoregie E; Chaurand P; Borschneck D; Bastiaens L; Rose J
    Environ Sci Pollut Res Int; 2016 Mar; 23(6):5960-8. PubMed ID: 26604198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Positive impact of microorganisms on the performance of laboratory-scale permeable reactive iron barriers.
    van Nooten T; Springael D; Bastiaens L
    Environ Sci Technol; 2008 Mar; 42(5):1680-6. PubMed ID: 18441820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbiological characteristics in a zero-valent iron reactive barrier.
    Gu B; Watson DB; Wu L; Phillips DH; White DC; Zhou J
    Environ Monit Assess; 2002 Aug; 77(3):293-309. PubMed ID: 12194417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mineralogical characteristics and transformations during long-term operation of a zerovalent iron reactive barrier.
    Phillips DH; Watson DB; Roh Y; Gu B
    J Environ Qual; 2003; 32(6):2033-45. PubMed ID: 14674525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of TCE, Cr(VI), sulfate, and nitrate mixtures by granular iron in flow-through columns under different microbial conditions.
    Gandhi S; Oh BT; Schnoor JL; Alvarez PJ
    Water Res; 2002 Apr; 36(8):1973-82. PubMed ID: 12092572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of Organic Carbon Electron Donors on Microbial Community Development under Iron- and Sulfate-Reducing Conditions.
    Kwon MJ; O'Loughlin EJ; Boyanov MI; Brulc JM; Johnston ER; Kemner KM; Antonopoulos DA
    PLoS One; 2016; 11(1):e0146689. PubMed ID: 26800443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated evaluation of the performance of a more than seven year old permeable reactive barrier at a site contaminated with chlorinated aliphatic hydrocarbons (CAHs).
    Muchitsch N; Van Nooten T; Bastiaens L; Kjeldsen P
    J Contam Hydrol; 2011 Nov; 126(3-4):258-70. PubMed ID: 22115091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron.
    Furukawa Y; Kim JW; Watkins J; Wilkin RT
    Environ Sci Technol; 2002 Dec; 36(24):5469-75. PubMed ID: 12521177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Longevity of granular iron in groundwater treatment processes: corrosion product development.
    Kohn T; Livi KJ; Roberts AL; Vikesland PJ
    Environ Sci Technol; 2005 Apr; 39(8):2867-79. PubMed ID: 15884388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial reduction of uranium under iron- and sulfate-reducing conditions: Effect of amended goethite on microbial community composition and dynamics.
    Moon HS; McGuinness L; Kukkadapu RK; Peacock AD; Komlos J; Kerkhof LJ; Long PE; Jaffé PR
    Water Res; 2010 Jul; 44(14):4015-28. PubMed ID: 20541787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of microbial trichloroethylene dechlorination [corrected] by Fe (III) reduction depends on Fe mineralogy: a batch study using the bioaugmentation culture KB-1.
    Paul L; Herrmann S; Koch CB; Philips J; Smolders E
    Water Res; 2013 May; 47(7):2543-54. PubMed ID: 23490101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphate loading alters schwertmannite transformation rates and pathways during microbial reduction.
    Schoepfer VA; Burton ED; Johnston SG; Kraal P
    Sci Total Environ; 2019 Mar; 657():770-780. PubMed ID: 30677942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfate availability drives the reductive transformation of schwertmannite by co-cultured iron- and sulfate-reducing bacteria.
    Ke C; Deng Y; Zhang S; Ren M; Liu B; He J; Wu R; Dang Z; Guo C
    Sci Total Environ; 2024 Jan; 906():167690. PubMed ID: 37820819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mercury mobilization and speciation linked to bacterial iron oxide and sulfate reduction: A column study to mimic reactive transfer in an anoxic aquifer.
    Hellal J; Guédron S; Huguet L; Schäfer J; Laperche V; Joulian C; Lanceleur L; Burnol A; Ghestem JP; Garrido F; Battaglia-Brunet F
    J Contam Hydrol; 2015 Sep; 180():56-68. PubMed ID: 26275395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regeneration of iron for trichloroethylene reduction by Shewanella alga BrY.
    Shin HY; Singhal N; Park JW
    Chemosphere; 2007 Jun; 68(6):1129-34. PubMed ID: 17349671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial Sulfate Reduction Enhances Arsenic Mobility Downstream of Zerovalent-Iron-Based Permeable Reactive Barrier.
    Kumar N; Couture RM; Millot R; Battaglia-Brunet F; Rose J
    Environ Sci Technol; 2016 Jul; 50(14):7610-7. PubMed ID: 27309856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of a reactive barrier and aquifer geology on metal distribution and mobility in a mine drainage impacted aquifer.
    Doerr NA; Ptacek CJ; Blowes DW
    J Contam Hydrol; 2005 Jun; 78(1-2):1-25. PubMed ID: 15949605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Schwertmannite transformation via direct or indirect electron transfer by a sulfate reducing enrichment culture.
    Zeng Y; Wang H; Guo C; Wan J; Fan C; Reinfelder JR; Lu G; Wu F; Huang W; Dang Z
    Environ Pollut; 2018 Nov; 242(Pt A):738-748. PubMed ID: 30031307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon and hydrogen isotope fractionation of benzene during biodegradation under sulfate-reducing conditions: a laboratory to field site approach.
    Fischer A; Gehre M; Breitfeld J; Richnow HH; Vogt C
    Rapid Commun Mass Spectrom; 2009 Aug; 23(16):2439-47. PubMed ID: 19603470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.