These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 17874779)

  • 21. Reactive transport modeling of column experiments for the remediation of acid mine drainage.
    Amos RT; Mayer KU; Blowes DW; Ptacek CJ
    Environ Sci Technol; 2004 Jun; 38(11):3131-8. PubMed ID: 15224746
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anaerobic biodegradation of alkanes by enriched consortia under four different reducing conditions.
    So CM; Young LY
    Environ Toxicol Chem; 2001 Mar; 20(3):473-8. PubMed ID: 11349845
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Organic carbon and reducing conditions lead to cadmium immobilization by secondary Fe mineral formation in a pH-neutral soil.
    Muehe EM; Adaktylou IJ; Obst M; Zeitvogel F; Behrens S; Planer-Friedrich B; Kraemer U; Kappler A
    Environ Sci Technol; 2013; 47(23):13430-9. PubMed ID: 24191747
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition of sulfate reducing bacteria in aquifer sediment by iron nanoparticles.
    Kumar N; Omoregie EO; Rose J; Masion A; Lloyd JR; Diels L; Bastiaens L
    Water Res; 2014 Mar; 51():64-72. PubMed ID: 24388832
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation of Fe-sulfides in cultures of sulfate-reducing bacteria.
    Gramp JP; Bigham JM; Jones FS; Tuovinen OH
    J Hazard Mater; 2010 Mar; 175(1-3):1062-7. PubMed ID: 19962824
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification and quantification of mineral precipitation in Fe0 filings from a column study.
    Kamolpornwijit W; Liang L; Moline GR; Hart T; West OR
    Environ Sci Technol; 2004 Nov; 38(21):5757-65. PubMed ID: 15575297
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Performance evaluation of granular iron for removing hexavalent chromium under different geochemical conditions.
    Jeen SW; Blowes DW; Gillham RW
    J Contam Hydrol; 2008 Jan; 95(1-2):76-91. PubMed ID: 17913283
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Precipitates on granular iron in solutions containing calcium carbonate with trichloroethene and hexavalent chromium.
    Jeen SW; Jambor JL; Blowes DW; Gillham RW
    Environ Sci Technol; 2007 Mar; 41(6):1989-94. PubMed ID: 17410795
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium.
    Liu D; Dong H; Bishop ME; Zhang J; Wang H; Xie S; Wang S; Huang L; Eberl DD
    Geobiology; 2012 Mar; 10(2):150-62. PubMed ID: 22074236
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Zero valent iron as an electron-donor for methanogenesis and sulfate reduction in anaerobic sludge.
    Karri S; Sierra-Alvarez R; Field JA
    Biotechnol Bioeng; 2005 Dec; 92(7):810-9. PubMed ID: 16136594
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transformation of reactive iron minerals in a permeable reactive barrier (biowall) used to treat TCE in groundwater.
    He YT; Wilson JT; Wilkin RT
    Environ Sci Technol; 2008 Sep; 42(17):6690-6. PubMed ID: 18800550
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solid phase studies and geochemical modelling of low-cost permeable reactive barriers.
    Bartzas G; Komnitsas K
    J Hazard Mater; 2010 Nov; 183(1-3):301-8. PubMed ID: 20678863
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite (gamma-FeOOH) and the formation of secondary mineralization products.
    O'Loughlin EJ; Gorski CA; Scherer MM; Boyanov MI; Kemner KM
    Environ Sci Technol; 2010 Jun; 44(12):4570-6. PubMed ID: 20476735
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In-situ activation of persulfate by iron filings and degradation of 1,4-dioxane.
    Zhong H; Brusseau ML; Wang Y; Yan N; Quig L; Johnson GR
    Water Res; 2015 Oct; 83():104-11. PubMed ID: 26141426
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Remedial Treatment of Corroded Iron Objects by Environmental
    Kooli WM; Junier T; Shakya M; Monachon M; Davenport KW; Vaideeswaran K; Vernudachi A; Marozau I; Monrouzeau T; Gleasner CD; McMurry K; Lienhard R; Rufener L; Perret JL; Sereda O; Chain PS; Joseph E; Junier P
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478230
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Magnetic sorbents biomineralization on the basis of iron sulphides.
    Jencarova J; Luptakova A; Vitkovska N; Matysek D; Jandacka P
    Environ Technol; 2018 Nov; 39(22):2916-2925. PubMed ID: 28818029
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Effects of benzene, toluene on reductive dechlorination of trichloroethylene and its daughter product cis-1,2-dichloroethylene by granular iron].
    Liu YL; Xia F; Liu F; Chen HH
    Huan Jing Ke Xue; 2010 Jul; 31(7):1526-32. PubMed ID: 20825021
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria.
    Miot J; Benzerara K; Morin G; Bernard S; Beyssac O; Larquet E; Kappler A; Guyot F
    Geobiology; 2009 Jun; 7(3):373-84. PubMed ID: 19573166
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Abiotic process for Fe(II) oxidation and green rust mineralization driven by a heterotrophic nitrate reducing bacteria (Klebsiella mobilis).
    Etique M; Jorand FP; Zegeye A; Grégoire B; Despas C; Ruby C
    Environ Sci Technol; 2014 Apr; 48(7):3742-51. PubMed ID: 24605878
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment.
    Kappler A; Benz M; Schink B; Brune A
    FEMS Microbiol Ecol; 2004 Jan; 47(1):85-92. PubMed ID: 19712349
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.