BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 17875221)

  • 1. Predicting state transitions in the transcriptome and metabolome using a linear dynamical system model.
    Morioka R; Kanaya S; Hirai MY; Yano M; Ogasawara N; Saito K
    BMC Bioinformatics; 2007 Sep; 8():343. PubMed ID: 17875221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-density kinetic analysis of the metabolomic and transcriptomic response of Arabidopsis to eight environmental conditions.
    Caldana C; Degenkolbe T; Cuadros-Inostroza A; Klie S; Sulpice R; Leisse A; Steinhauser D; Fernie AR; Willmitzer L; Hannah MA
    Plant J; 2011 Sep; 67(5):869-84. PubMed ID: 21575090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection and interpretation of metabolite-transcript coresponses using combined profiling data.
    Redestig H; Costa IG
    Bioinformatics; 2011 Jul; 27(13):i357-65. PubMed ID: 21685093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dynamic response of the Arabidopsis root metabolome to auxin and ethylene is not predicted by changes in the transcriptome.
    Hildreth SB; Foley EE; Muday GK; Helm RF; Winkel BSJ
    Sci Rep; 2020 Jan; 10(1):679. PubMed ID: 31959762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring gene regulatory networks from time-ordered gene expression data of Bacillus subtilis using differential equations.
    de Hoon MJ; Imoto S; Kobayashi K; Ogasawara N; Miyano S
    Pac Symp Biocomput; 2003; ():17-28. PubMed ID: 12603014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of transcription factor's targets using tissue-specific transcriptomic data in Arabidopsis thaliana.
    Srivastava GP; Li P; Liu J; Xu D
    BMC Syst Biol; 2010 Sep; 4 Suppl 2(Suppl 2):S2. PubMed ID: 20840729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive proteomics and transcriptomics analysis of Bacillus subtilis salt stress adaptation.
    Hahne H; Mäder U; Otto A; Bonn F; Steil L; Bremer E; Hecker M; Becher D
    J Bacteriol; 2010 Feb; 192(3):870-82. PubMed ID: 19948795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of network topological units coordinating the global expression response to glucose in Bacillus subtilis and its comparison to Escherichia coli.
    Vázquez CD; Freyre-González JA; Gosset G; Loza JA; Gutiérrez-Ríos RM
    BMC Microbiol; 2009 Aug; 9():176. PubMed ID: 19703276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole genome transcriptome polymorphisms in Arabidopsis thaliana.
    Zhang X; Byrnes JK; Gal TS; Li WH; Borevitz JO
    Genome Biol; 2008; 9(11):R165. PubMed ID: 19025653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracting biological information from DNA arrays: an unexpected link between arginine and methionine metabolism in Bacillus subtilis.
    Sekowska A; Robin S; Daudin JJ; Hénaut A; Danchin A
    Genome Biol; 2001; 2(6):RESEARCH0019. PubMed ID: 11423008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of Arabidopsis thaliana stress-related transcript profiles, promoter structures, and cell-specific expression.
    Ma S; Bohnert HJ
    Genome Biol; 2007; 8(4):R49. PubMed ID: 17408486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Root transcriptome analysis of Arabidopsis thaliana exposed to beneficial Bacillus subtilis FB17 rhizobacteria revealed genes for bacterial recruitment and plant defense independent of malate efflux.
    Lakshmanan V; Castaneda R; Rudrappa T; Bais HP
    Planta; 2013 Oct; 238(4):657-68. PubMed ID: 23794026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated metabolome and transcriptome analysis of the NCI60 dataset.
    Su G; Burant CF; Beecher CW; Athey BD; Meng F
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S36. PubMed ID: 21342567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolite profiling and associated gene expression reveal two metabolic shifts during the seed-to-seedling transition in Arabidopsis thaliana.
    Silva AT; Ligterink W; Hilhorst HWM
    Plant Mol Biol; 2017 Nov; 95(4-5):481-496. PubMed ID: 29046998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hidden Markov model-based approach for identifying timing differences in gene expression under different experimental factors.
    Yoneya T; Mamitsuka H
    Bioinformatics; 2007 Apr; 23(7):842-9. PubMed ID: 17237042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AtMetExpress development: a phytochemical atlas of Arabidopsis development.
    Matsuda F; Hirai MY; Sasaki E; Akiyama K; Yonekura-Sakakibara K; Provart NJ; Sakurai T; Shimada Y; Saito K
    Plant Physiol; 2010 Feb; 152(2):566-78. PubMed ID: 20023150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvements in the reconstruction of time-varying gene regulatory networks: dynamic programming and regularization by information sharing among genes.
    Grzegorczyk M; Husmeier D
    Bioinformatics; 2011 Mar; 27(5):693-9. PubMed ID: 21177328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EDISA: extracting biclusters from multiple time-series of gene expression profiles.
    Supper J; Strauch M; Wanke D; Harter K; Zell A
    BMC Bioinformatics; 2007 Sep; 8():334. PubMed ID: 17850657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methodological approaches to help unravel the intracellular metabolome of Bacillus subtilis.
    Meyer H; Weidmann H; Lalk M
    Microb Cell Fact; 2013 Jul; 12():69. PubMed ID: 23844891
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.