These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 17875435)

  • 1. Methods of changing biopolymer volume fraction and cytoplasmic solute concentrations for in vivo biophysical studies.
    Konopka MC; Weisshaar JC; Record MT
    Methods Enzymol; 2007; 428():487-504. PubMed ID: 17875435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large changes in cytoplasmic biopolymer concentration with osmolality indicate that macromolecular crowding may regulate protein-DNA interactions and growth rate in osmotically stressed Escherichia coli K-12.
    Cayley S; Record MT
    J Mol Recognit; 2004; 17(5):488-96. PubMed ID: 15362109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of cytoplasmic osmolytes, water, and crowding in the response of Escherichia coli to osmotic stress: biophysical basis of osmoprotection by glycine betaine.
    Cayley S; Record MT
    Biochemistry; 2003 Nov; 42(43):12596-609. PubMed ID: 14580206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biophysical characterization of changes in amounts and activity of Escherichia coli cell and compartment water and turgor pressure in response to osmotic stress.
    Cayley DS; Guttman HJ; Record MT
    Biophys J; 2000 Apr; 78(4):1748-64. PubMed ID: 10733957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biophysical compensation mechanisms buffering E. coli protein-nucleic acid interactions against changing environments.
    Record MT; Courtenay ES; Cayley S; Guttman HJ
    Trends Biochem Sci; 1998 May; 23(5):190-4. PubMed ID: 9612084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The exclusion of glycine betaine from anionic biopolymer surface: why glycine betaine is an effective osmoprotectant but also a compatible solute.
    Felitsky DJ; Cannon JG; Capp MW; Hong J; Van Wynsberghe AW; Anderson CF; Record MT
    Biochemistry; 2004 Nov; 43(46):14732-43. PubMed ID: 15544344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Urea-amide preferential interactions in water: quantitative comparison of model compound data with biopolymer results using water accessible surface areas.
    Cannon JG; Anderson CF; Record MT
    J Phys Chem B; 2007 Aug; 111(32):9675-85. PubMed ID: 17658791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determinants of osmotic phenomena created by an isolated change in extracellular solute in anuria.
    Tzamaloukas AH; Kyner WT; Galey WR
    Miner Electrolyte Metab; 1987; 13(2):117-25. PubMed ID: 3696090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decreased Effective Macromolecular Crowding in Escherichia coli Adapted to Hyperosmotic Stress.
    Liu B; Hasrat Z; Poolman B; Boersma AJ
    J Bacteriol; 2019 May; 201(10):. PubMed ID: 30833357
    [No Abstract]   [Full Text] [Related]  

  • 10. Impact of osmotic stress on protein diffusion in Lactococcus lactis.
    Mika JT; Schavemaker PE; Krasnikov V; Poolman B
    Mol Microbiol; 2014 Nov; 94(4):857-70. PubMed ID: 25244659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial osmosensing transporters.
    Wood JM
    Methods Enzymol; 2007; 428():77-107. PubMed ID: 17875413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein mobility and diffusive barriers in Escherichia coli: consequences of osmotic stress.
    van den Bogaart G; Hermans N; Krasnikov V; Poolman B
    Mol Microbiol; 2007 May; 64(3):858-71. PubMed ID: 17462029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular sieving properties of the cytoplasm of Escherichia coli and consequences of osmotic stress.
    Mika JT; van den Bogaart G; Veenhoff L; Krasnikov V; Poolman B
    Mol Microbiol; 2010 Jul; 77(1):200-7. PubMed ID: 20487282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Problems in the understanding of cell volume regulation.
    Macknight AD; Gordon LG; Purves RD
    J Exp Zool; 1994 Feb; 268(2):80-9. PubMed ID: 8301255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity. Implications for protein-DNA interactions in vivo.
    Cayley S; Lewis BA; Guttman HJ; Record MT
    J Mol Biol; 1991 Nov; 222(2):281-300. PubMed ID: 1960728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of protein conformation and aggregation in pumping water in and out of a cell.
    Cameron IL; Kanal KM; Fullerton GD
    Cell Biol Int; 2006 Jan; 30(1):78-85. PubMed ID: 16376581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Introductory lecture: interpreting and predicting Hofmeister salt ion and solute effects on biopolymer and model processes using the solute partitioning model.
    Record MT; Guinn E; Pegram L; Capp M
    Faraday Discuss; 2013; 160():9-44; discussion 103-20. PubMed ID: 23795491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volume and free energy of folding for troponin C C-domain: linkage to ion binding and N-domain interaction.
    Rocha CB; Suarez MC; Yu A; Ballard L; Sorenson MM; Foguel D; Silva JL
    Biochemistry; 2008 Apr; 47(17):5047-58. PubMed ID: 18393534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crowding effects on diffusion in solutions and cells.
    Dix JA; Verkman AS
    Annu Rev Biophys; 2008; 37():247-63. PubMed ID: 18573081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergetic mechanisms of chiral symmetry breaking in prebiotic evolution.
    Babinec P; Krempaský J
    Gen Physiol Biophys; 1994 Aug; 13(4):267-73. PubMed ID: 7890143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.