BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 17875605)

  • 21. Analysis of Renal Cell Carcinoma Cell Response to the Enhancement of 5-aminolevulinic Acid-mediated Protoporphyrin IX Fluorescence by Iron Chelator Deferoxamine
    Howley R; Mansi M; Shinde J; Restrepo J; Chen B
    Photochem Photobiol; 2023 Mar; 99(2):787-792. PubMed ID: 35857390
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential Regulation of the Two Ferrochelatase Paralogues in Shewanella loihica PV-4 in Response to Environmental Stresses.
    Qiu D; Xie M; Dai J; An W; Wei H; Tian C; Kempher ML; Zhou A; He Z; Gu B; Zhou J
    Appl Environ Microbiol; 2016 Sep; 82(17):5077-88. PubMed ID: 27287322
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expression of ferrochelatase has a strong correlation in protoporphyrin IX accumulation with photodynamic detection of bladder cancer.
    Nakai Y; Tatsumi Y; Miyake M; Anai S; Kuwada M; Onishi S; Chihara Y; Tanaka N; Hirao Y; Fujimoto K
    Photodiagnosis Photodyn Ther; 2016 Mar; 13():225-232. PubMed ID: 26226642
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impaired expression of the plastidic ferrochelatase by antisense RNA synthesis leads to a necrotic phenotype of transformed tobacco plants.
    Papenbrock J; Mishra S; Mock HP; Kruse E; Schmidt EK; Petersmann A; Braun HP; Grimm B
    Plant J; 2001 Oct; 28(1):41-50. PubMed ID: 11696185
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell-type specific protoporphyrin IX metabolism in human bladder cancer in vitro.
    Krieg RC; Fickweiler S; Wolfbeis OS; Knuechel R
    Photochem Photobiol; 2000 Aug; 72(2):226-33. PubMed ID: 10946577
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative Study of the Effects of Ferrochelatase-siRNA Transfection Mediated by Ultrasound Microbubbles and Polyethyleneimine in Combination with Low-dose ALA to Enhance PpIX Accumulation in Human Endometrial Cancer Xenograft Nude Mice Models.
    Zhang X; Chen L; Gao L; Gao X; Li N; Song Y; Huang X; Lin S; Wang X
    Photochem Photobiol; 2019 Jul; 95(4):1045-1051. PubMed ID: 30582757
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The p53-dependent expression of frataxin controls 5-aminolevulinic acid-induced accumulation of protoporphyrin IX and photo-damage in cancerous cells.
    Sawamoto M; Imai T; Umeda M; Fukuda K; Kataoka T; Taketani S
    Photochem Photobiol; 2013; 89(1):163-72. PubMed ID: 22862424
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Roles of porphyrin and iron metabolisms in the δ-aminolevulinic acid (ALA)-induced accumulation of protoporphyrin and photodamage of tumor cells.
    Ohgari Y; Miyata Y; Miyagi T; Gotoh S; Ohta T; Kataoka T; Furuyama K; Taketani S
    Photochem Photobiol; 2011; 87(5):1138-45. PubMed ID: 21668870
    [TBL] [Abstract][Full Text] [Related]  

  • 29. siRNA-mediated knockdown of the heme synthesis and degradation pathways: modulation of treatment effect of 5-aminolevulinic acid-based photodynamic therapy in urothelial cancer cell lines.
    Miyake M; Ishii M; Kawashima K; Kodama T; Sugano K; Fujimoto K; Hirao Y
    Photochem Photobiol; 2009; 85(4):1020-7. PubMed ID: 19320847
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Liaison between heme metabolism and bioenergetics pathways-a multimodal elucidation for early diagnosis of oral cancer.
    Sarkar R; Chatterjee K; Ojha D; Chakraborty B; Sengupta S; Chattopadhyay D; RoyChaudhuri C; Barui A
    Photodiagnosis Photodyn Ther; 2018 Mar; 21():263-274. PubMed ID: 29307774
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of 5-aminolevulinic acid-dependent protoporphyrin IX accumulations in human histiocytic lymphoma U937 cells.
    Okimura Y; Fujita H; Ogino T; Inoue K; Shuin T; Yano H; Yasuda T; Inoue M; Utsumi K; Sasaki J
    Physiol Chem Phys Med NMR; 2007; 39(1):69-82. PubMed ID: 18613640
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mitochondrial localization of ABC transporter ABCG2 and its function in 5-aminolevulinic acid-mediated protoporphyrin IX accumulation.
    Kobuchi H; Moriya K; Ogino T; Fujita H; Inoue K; Shuin T; Yasuda T; Utsumi K; Utsumi T
    PLoS One; 2012; 7(11):e50082. PubMed ID: 23189181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transgenic Tobacco Lines Expressing Sense or Antisense FERROCHELATASE 1 RNA Show Modified Ferrochelatase Activity in Roots and Provide Experimental Evidence for Dual Localization of Ferrochelatase 1.
    Hey D; Ortega-Rodes P; Fan T; Schnurrer F; Brings L; Hedtke B; Grimm B
    Plant Cell Physiol; 2016 Dec; 57(12):2576-2585. PubMed ID: 27818378
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of ferrochelatase gene expression by hypoxia.
    Liu YL; Ang SO; Weigent DA; Prchal JT; Bloomer JR
    Life Sci; 2004 Sep; 75(17):2035-43. PubMed ID: 15312748
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of delta-aminolevulinic acid on protoporphyrin IX accumulation in tumor cells transfected with plasmids containing porphobilinogen deaminase DNA.
    Hilf R; Havens JJ; Gibson SL
    Photochem Photobiol; 1999 Sep; 70(3):334-40. PubMed ID: 10483361
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strong correlation of ferrochelatase enzymatic activity with Mitoferrin-1 mRNA in lymphoblasts of patients with protoporphyria.
    Phillips J; Farrell C; Wang Y; Singal AK; Anderson K; Balwani M; Bissell M; Bonkovsky H; Seay T; Paw B; Desnick R; Bloomer J
    Mol Genet Metab; 2019 Nov; 128(3):391-395. PubMed ID: 30391163
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Porcine ferrochelatase: the relationship between iron-removal reaction and the conversion of heme to Zn-protoporphyrin.
    Chau TT; Ishigaki M; Kataoka T; Taketani S
    Biosci Biotechnol Biochem; 2010; 74(7):1415-20. PubMed ID: 20622448
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential gene content and gene expression for bacterial evolution and speciation of Shewanella in terms of biosynthesis of heme and heme-requiring proteins.
    Dai J; Liu Y; Liu S; Li S; Gao N; Wang J; Zhou J; Qiu D
    BMC Microbiol; 2019 Jul; 19(1):173. PubMed ID: 31362704
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    Xu L; Qi Q; Zhu J; Ma X
    Chem Res Toxicol; 2022 Dec; 35(12):2186-2193. PubMed ID: 36459538
    [No Abstract]   [Full Text] [Related]  

  • 40. Impact of thiosemicarbazones on the accumulation of PpIX and the expression of the associated genes.
    Gawecki R; Malarz K; Rejmund M; Polanski J; Mrozek-Wilczkiewicz A
    J Photochem Photobiol B; 2019 Oct; 199():111585. PubMed ID: 31450131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.