These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 17876061)

  • 1. The retina-attached SCN slice preparation: an in vitro mammalian circadian visual system.
    Wong KY; Graham DM; Berson DM
    J Biol Rhythms; 2007 Oct; 22(5):400-10. PubMed ID: 17876061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic advances in ophthalmology: the role of melanopsin-expressing, intrinsically photosensitive retinal ganglion cells in the circadian organization of the visual system.
    Ramsey DJ; Ramsey KM; Vavvas DG
    Semin Ophthalmol; 2013; 28(5-6):406-21. PubMed ID: 24010846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phototransduction by retinal ganglion cells that set the circadian clock.
    Berson DM; Dunn FA; Takao M
    Science; 2002 Feb; 295(5557):1070-3. PubMed ID: 11834835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light stimulates the mouse adrenal through a retinohypothalamic pathway independent of an effect on the clock in the suprachiasmatic nucleus.
    Kiessling S; Sollars PJ; Pickard GE
    PLoS One; 2014; 9(3):e92959. PubMed ID: 24658072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melanopsin: a novel photopigment involved in the photoentrainment of the brain's biological clock?
    Hannibal J; Fahrenkrug J
    Ann Med; 2002; 34(5):401-7. PubMed ID: 12452484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responses of suprachiasmatic nucleus neurons to light and dark adaptation: relative contributions of melanopsin and rod-cone inputs.
    Drouyer E; Rieux C; Hut RA; Cooper HM
    J Neurosci; 2007 Sep; 27(36):9623-31. PubMed ID: 17804622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of suprachiasmatic nuclei and primary visual cortex depends upon time of day.
    Vimal RL; Pandey-Vimal MU; Vimal LS; Frederick BB; Stopa EG; Renshaw PF; Vimal SP; Harper DG
    Eur J Neurosci; 2009 Jan; 29(2):399-410. PubMed ID: 19200242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photic regulation of clock systems.
    Hughes S; Jagannath A; Hankins MW; Foster RG; Peirson SN
    Methods Enzymol; 2015; 552():125-43. PubMed ID: 25707275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus.
    Baver SB; Pickard GE; Sollars PJ; Pickard GE
    Eur J Neurosci; 2008 Apr; 27(7):1763-70. PubMed ID: 18371076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geniculohypothalamic GABAergic projections gate suprachiasmatic nucleus responses to retinal input.
    Hanna L; Walmsley L; Pienaar A; Howarth M; Brown TM
    J Physiol; 2017 Jun; 595(11):3621-3649. PubMed ID: 28217893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: bifurcation and melanopsin immunoreactivity.
    Morin LP; Blanchard JH; Provencio I
    J Comp Neurol; 2003 Oct; 465(3):401-16. PubMed ID: 12966564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-evoked FOS induction within the suprachiasmatic nuclei (SCN) of melanopsin knockout (Opn4-/-) mice: a developmental study.
    Lupi D; Sekaran S; Jones SL; Hankins MW; Foster RG
    Chronobiol Int; 2006; 23(1-2):167-79. PubMed ID: 16687291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melanopsin in cells of origin of the retinohypothalamic tract.
    Gooley JJ; Lu J; Chou TC; Scammell TE; Saper CB
    Nat Neurosci; 2001 Dec; 4(12):1165. PubMed ID: 11713469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melanopsin-dependent nonvisual responses: evidence for photopigment bistability in vivo.
    Mure LS; Rieux C; Hattar S; Cooper HM
    J Biol Rhythms; 2007 Oct; 22(5):411-24. PubMed ID: 17876062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulations in irradiance directed at melanopsin, but not cone photoreceptors, reliably alter electrophysiological activity in the suprachiasmatic nucleus and circadian behaviour in mice.
    Mouland JW; Martial FP; Lucas RJ; Brown TM
    J Pineal Res; 2021 May; 70(4):e12735. PubMed ID: 33793975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of PACAP-containing retinal ganglion cells in circadian timing.
    Hannibal J
    Int Rev Cytol; 2006; 251():1-39. PubMed ID: 16939776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A neuroanatomical and physiological study of the non-image forming visual system of the cone-rod homeobox gene (Crx) knock out mouse.
    Rovsing L; Rath MF; Lund-Andersen C; Klein DC; Møller M
    Brain Res; 2010 Jul; 1343():54-65. PubMed ID: 20438719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melanopsin and non-melanopsin expressing retinal ganglion cells innervate the hypothalamic suprachiasmatic nucleus.
    Sollars PJ; Smeraski CA; Kaufman JD; Ogilvie MD; Provencio I; Pickard GE
    Vis Neurosci; 2003; 20(6):601-10. PubMed ID: 15088713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Architecture of retinal projections to the central circadian pacemaker.
    Fernandez DC; Chang YT; Hattar S; Chen SK
    Proc Natl Acad Sci U S A; 2016 May; 113(21):6047-52. PubMed ID: 27162356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The light-activated signaling pathway in SCN-projecting rat retinal ganglion cells.
    Warren EJ; Allen CN; Brown RL; Robinson DW
    Eur J Neurosci; 2006 May; 23(9):2477-87. PubMed ID: 16706854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.