BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 17876518)

  • 21. Sterol carrier protein-2 selectively alters lipid composition and cholesterol dynamics of caveolae/lipid raft vs nonraft domains in L-cell fibroblast plasma membranes.
    Atshaves BP; Gallegos AM; McIntosh AL; Kier AB; Schroeder F
    Biochemistry; 2003 Dec; 42(49):14583-98. PubMed ID: 14661971
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation and analysis of lipid rafts in cell-cell interactions.
    Landry A; Xavier R
    Methods Mol Biol; 2006; 341():251-82. PubMed ID: 16799204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and function of lipid rafts in human activated T cells.
    Tani-ichi S; Maruyama K; Kondo N; Nagafuku M; Kabayama K; Inokuchi J; Shimada Y; Ohno-Iwashita Y; Yagita H; Kawano S; Kosugi A
    Int Immunol; 2005 Jun; 17(6):749-58. PubMed ID: 15967787
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distribution and transport of cholesterol-rich membrane domains monitored by a membrane-impermeant fluorescent polyethylene glycol-derivatized cholesterol.
    Sato SB; Ishii K; Makino A; Iwabuchi K; Yamaji-Hasegawa A; Senoh Y; Nagaoka I; Sakuraba H; Kobayashi T
    J Biol Chem; 2004 May; 279(22):23790-6. PubMed ID: 15026415
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes.
    Wiśniewska A; Draus J; Subczynski WK
    Cell Mol Biol Lett; 2003; 8(1):147-59. PubMed ID: 12655369
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Domain-specific lipid distribution in macrophage plasma membranes.
    Gaus K; Rodriguez M; Ruberu KR; Gelissen I; Sloane TM; Kritharides L; Jessup W
    J Lipid Res; 2005 Jul; 46(7):1526-38. PubMed ID: 15863834
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Some new faces of membrane microdomains: a complex confocal fluorescence, differential polarization, and FCS imaging study on live immune cells.
    Gombos I; Steinbach G; Pomozi I; Balogh A; Vámosi G; Gansen A; László G; Garab G; Matkó J
    Cytometry A; 2008 Mar; 73(3):220-9. PubMed ID: 18163467
    [TBL] [Abstract][Full Text] [Related]  

  • 28. G-protein-coupled receptor-signaling components in membrane raft and caveolae microdomains.
    Patel HH; Murray F; Insel PA
    Handb Exp Pharmacol; 2008; (186):167-84. PubMed ID: 18491052
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reduction of glycosphingolipid levels in lipid rafts affects the expression state and function of glycosylphosphatidylinositol-anchored proteins but does not impair signal transduction via the T cell receptor.
    Nagafuku M; Kabayama K; Oka D; Kato A; Tani-ichi S; Shimada Y; Ohno-Iwashita Y; Yamasaki S; Saito T; Iwabuchi K; Hamaoka T; Inokuchi J; Kosugi A
    J Biol Chem; 2003 Dec; 278(51):51920-7. PubMed ID: 14506277
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of sterol carrier protein-2 expression on sphingolipid distribution in plasma membrane lipid rafts/caveolae.
    Atshaves BP; Jefferson JR; McIntosh AL; Gallegos A; McCann BM; Landrock KK; Kier AB; Schroeder F
    Lipids; 2007 Oct; 42(10):871-84. PubMed ID: 17680294
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Artificially lipid-anchored proteins can elicit clustering-induced intracellular signaling events in Jurkat T-lymphocytes independent of lipid raft association.
    Wang TY; Leventis R; Silvius JR
    J Biol Chem; 2005 Jun; 280(24):22839-46. PubMed ID: 15817446
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lysenin: a sphingomyelin specific pore-forming toxin.
    Shogomori H; Kobayashi T
    Biochim Biophys Acta; 2008 Mar; 1780(3):612-8. PubMed ID: 17980968
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pulmonary lipid phosphate phosphohydrolase in plasma membrane signalling platforms.
    Nanjundan M; Possmayer F
    Biochem J; 2001 Sep; 358(Pt 3):637-46. PubMed ID: 11535125
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The lipid-modulating effects of a CD4-specific recombinant antibody correlate with ZAP-70 segregation outside membrane rafts.
    Chentouf M; Rigo M; Ghannam S; Navarro-Teulon I; Mongrand S; Pèlegrin A; Chardès T
    Immunol Lett; 2010 Oct; 133(2):62-9. PubMed ID: 20659502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sphingomyelin-rich domains are sites of lysenin oligomerization: implications for raft studies.
    Kulma M; Hereć M; Grudziński W; Anderluh G; Gruszecki WI; Kwiatkowska K; Sobota A
    Biochim Biophys Acta; 2010 Mar; 1798(3):471-81. PubMed ID: 20018171
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation of membrane rafts and signaling complexes.
    Boesze-Battaglia K
    Methods Mol Biol; 2006; 332():169-79. PubMed ID: 16878692
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lipid rafts: structure, function and role in HIV, Alzheimer's and prion diseases.
    Fantini J; Garmy N; Mahfoud R; Yahi N
    Expert Rev Mol Med; 2002 Dec; 4(27):1-22. PubMed ID: 14987385
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sphingolipids and lipid rafts: Novel concepts and methods of analysis.
    Bieberich E
    Chem Phys Lipids; 2018 Nov; 216():114-131. PubMed ID: 30194926
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lipid rafts and plasma membrane microorganization: insights from Ras.
    Parton RG; Hancock JF
    Trends Cell Biol; 2004 Mar; 14(3):141-7. PubMed ID: 15003623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distinct localization of lipid rafts and externalized phosphatidylserine at the surface of apoptotic cells.
    Ishii H; Mori T; Shiratsuchi A; Nakai Y; Shimada Y; Ohno-Iwashita Y; Nakanishi Y
    Biochem Biophys Res Commun; 2005 Feb; 327(1):94-9. PubMed ID: 15629434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.