These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 17876756)
1. Development of new glass composite membranes and their properties for low temperature H2/O2 fuel cells. Uma T; Nogami M Chemphyschem; 2007 Oct; 8(15):2227-34. PubMed ID: 17876756 [TBL] [Abstract][Full Text] [Related]
2. Proton-conducting glass electrolyte. Uma T; Nogami M Anal Chem; 2008 Jan; 80(2):506-8. PubMed ID: 18081259 [TBL] [Abstract][Full Text] [Related]
3. Effect of increasing titanium dioxide content on bulk and surface properties of phosphate-based glasses. Abou Neel EA; Chrzanowski W; Knowles JC Acta Biomater; 2008 May; 4(3):523-34. PubMed ID: 18249043 [TBL] [Abstract][Full Text] [Related]
4. Phosphotungstic acid functionalized silica nanocomposites with tunable bicontinuous mesoporous structure and superior proton conductivity and stability for fuel cells. Zeng J; Zhou Y; Li L; Jiang SP Phys Chem Chem Phys; 2011 Jun; 13(21):10249-57. PubMed ID: 21541370 [TBL] [Abstract][Full Text] [Related]
6. Acid-functionalized polysilsesquioxane-nafion composite membranes with high proton conductivity and enhanced selectivity. Xu K; Chanthad C; Gadinski MR; Hickner MA; Wang Q ACS Appl Mater Interfaces; 2009 Nov; 1(11):2573-9. PubMed ID: 20356129 [TBL] [Abstract][Full Text] [Related]
7. Development, characterisation and biocompatibility testing of a cobalt-containing titanium phosphate-based glass for engineering of vascularized hard tissues. Lee IH; Yu HS; Lakhkar NJ; Kim HW; Gong MS; Knowles JC; Wall IB Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2104-12. PubMed ID: 23498238 [TBL] [Abstract][Full Text] [Related]
8. Structure-relaxation interplay of a new nanostructured membrane based on tetraethylammonium trifluoromethanesulfonate ionic liquid and neutralized nafion 117 for high-temperature fuel cells. Di Noto V; Negro E; Sanchez JY; Iojoiu C J Am Chem Soc; 2010 Feb; 132(7):2183-95. PubMed ID: 20102239 [TBL] [Abstract][Full Text] [Related]
9. A self-ordered, crystalline glass, mesoporous nanocomposite with high proton conductivity of 2 x 10(-2) S cm-1 at intermediate temperature. Yamada M; Li D; Honma I; Zhou H J Am Chem Soc; 2005 Sep; 127(38):13092-3. PubMed ID: 16173706 [TBL] [Abstract][Full Text] [Related]
10. Nonhumidified intermediate temperature fuel cells using protic ionic liquids. Lee SY; Ogawa A; Kanno M; Nakamoto H; Yasuda T; Watanabe M J Am Chem Soc; 2010 Jul; 132(28):9764-73. PubMed ID: 20578771 [TBL] [Abstract][Full Text] [Related]
11. A study on electric conductivity of phosphoric acid supported on nano-pore rice husk silica in H2/Pt/H3PO4 / RHS/Pt/O2 fuel cells. Hwang MJ; Lee SY; Han CS J Nanosci Nanotechnol; 2006 Nov; 6(11):3491-3. PubMed ID: 17252796 [TBL] [Abstract][Full Text] [Related]
12. An ultrathin self-humidifying membrane for PEM fuel cell application: fabrication, characterization, and experimental analysis. Zhu X; Zhang H; Zhang Y; Liang Y; Wang X; Yi B J Phys Chem B; 2006 Jul; 110(29):14240-8. PubMed ID: 16854127 [TBL] [Abstract][Full Text] [Related]
13. Biomembranes for fuel cell electrolytes employing anhydrous proton conducting uracil composites. Yamada M; Honma I Biosens Bioelectron; 2006 May; 21(11):2064-9. PubMed ID: 16530401 [TBL] [Abstract][Full Text] [Related]
14. Structure-property interplay of proton conducting membranes based on PBI5N, SiO2-Im and H3PO4 for high temperature fuel cells. Di Noto V; Piga M; Giffin GA; Quartarone E; Righetti P; Mustarelli P; Magistris A Phys Chem Chem Phys; 2011 Jul; 13(26):12146-54. PubMed ID: 21594297 [TBL] [Abstract][Full Text] [Related]
16. Self assembled 12-tungstophosphoric acid-silica mesoporous nanocomposites as proton exchange membranes for direct alcohol fuel cells. Tang H; Pan M; Jiang SP Dalton Trans; 2011 May; 40(19):5220-7. PubMed ID: 21455522 [TBL] [Abstract][Full Text] [Related]
17. A dual electrolyte H2/O2 planar membraneless microchannel fuel cell system with open circuit potentials in excess of 1.4 V. Cohen JL; Volpe DJ; Westly DA; Pechenik A; Abruña HD Langmuir; 2005 Apr; 21(8):3544-50. PubMed ID: 15807600 [TBL] [Abstract][Full Text] [Related]
18. Enhancing Physicochemical Properties and Single Cell Performance of Sulfonated Poly(arylene ether) (SPAE) Membrane by Incorporation of Phosphotungstic Acid and Graphene Oxide: A Potential Electrolyte for Proton Exchange Membrane Fuel Cells. Ryu SK; Kim AR; Vinothkannan M; Lee KH; Chu JY; Yoo DJ Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301122 [TBL] [Abstract][Full Text] [Related]
19. SPEEK-zirconium hydrogen phosphate composite membranes with low methanol permeability prepared by electro-migration and in situ precipitation. Tripathi BP; Shahi VK J Colloid Interface Sci; 2007 Dec; 316(2):612-21. PubMed ID: 17888445 [TBL] [Abstract][Full Text] [Related]