BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 17876801)

  • 1. Bone growth in rapid prototyped porous titanium implants.
    Lopez-Heredia MA; Goyenvalle E; Aguado E; Pilet P; Leroux C; Dorget M; Weiss P; Layrolle P
    J Biomed Mater Res A; 2008 Jun; 85(3):664-73. PubMed ID: 17876801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo performance of selective electron beam-melted Ti-6Al-4V structures.
    Ponader S; von Wilmowsky C; Widenmayer M; Lutz R; Heinl P; Körner C; Singer RF; Nkenke E; Neukam FW; Schlegel KA
    J Biomed Mater Res A; 2010 Jan; 92(1):56-62. PubMed ID: 19165781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment.
    Taniguchi N; Fujibayashi S; Takemoto M; Sasaki K; Otsuki B; Nakamura T; Matsushita T; Kokubo T; Matsuda S
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():690-701. PubMed ID: 26652423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties and osteoconductivity of porous bioactive titanium.
    Takemoto M; Fujibayashi S; Neo M; Suzuki J; Kokubo T; Nakamura T
    Biomaterials; 2005 Oct; 26(30):6014-23. PubMed ID: 15885769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of Young's modulus of loaded implants on bone remodeling: an experimental and numerical study in the goat knee.
    Stoppie N; Van Oosterwyck H; Jansen J; Wolke J; Wevers M; Naert I
    J Biomed Mater Res A; 2009 Sep; 90(3):792-803. PubMed ID: 18615463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM).
    Parthasarathy J; Starly B; Raman S; Christensen A
    J Mech Behav Biomed Mater; 2010 Apr; 3(3):249-59. PubMed ID: 20142109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous titanium granules used as osteoconductive material for sinus floor augmentation: a clinical pilot study.
    Bystedt H; Rasmusson L
    Clin Implant Dent Relat Res; 2009 Jun; 11(2):101-5. PubMed ID: 18657154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porous titanium for biomedical applications: an experimental study on rabbits.
    de Vasconcellos LM; Leite DD; Nascimento FO; de Vasconcellos LG; Graça ML; Carvalho YR; Cairo CA
    Med Oral Patol Oral Cir Bucal; 2010 Mar; 15(2):e407-12. PubMed ID: 19767696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Histomorphometric evaluation of bone ingrowth of porous titanium by a computer-assisted analyzing system].
    Endres S; Wilke M; Frank H; Knöll P; Kratz M; Windler M; Wilke A
    Biomed Tech (Berl); 2005 Dec; 50(12):408-12. PubMed ID: 16429945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone ingrowth in porous titanium implants produced by 3D fiber deposition.
    Li JP; Habibovic P; van den Doel M; Wilson CE; de Wijn JR; van Blitterswijk CA; de Groot K
    Biomaterials; 2007 Jun; 28(18):2810-20. PubMed ID: 17367852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants.
    Otsuki B; Takemoto M; Fujibayashi S; Neo M; Kokubo T; Nakamura T
    Biomaterials; 2006 Dec; 27(35):5892-900. PubMed ID: 16945409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting.
    Heinl P; Müller L; Körner C; Singer RF; Müller FA
    Acta Biomater; 2008 Sep; 4(5):1536-44. PubMed ID: 18467197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Studies on personalized porous titanium implant fabricated using three-dimensional printing forming technique].
    Xiong Y; Chen P; Sun J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Apr; 29(2):247-50. PubMed ID: 22616167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone tissue induction, using a COLLOSS-filled titanium fibre mesh-scaffolding material.
    Walboomers XF; Jansen JA
    Biomaterials; 2005 Aug; 26(23):4779-85. PubMed ID: 15763257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of scaffold architecture on properties of direct 3D fiber deposition of porous Ti6Al4V for orthopedic implants.
    Li JP; de Wijn JR; van Blitterswijk CA; de Groot K
    J Biomed Mater Res A; 2010 Jan; 92(1):33-42. PubMed ID: 19165798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mediation of bone ingrowth in porous hydroxyapatite bone graft substitutes.
    Hing KA; Best SM; Tanner KE; Bonfield W; Revell PA
    J Biomed Mater Res A; 2004 Jan; 68(1):187-200. PubMed ID: 14661264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High strength, low stiffness, porous NiTi with superelastic properties.
    Greiner C; Oppenheimer SM; Dunand DC
    Acta Biomater; 2005 Nov; 1(6):705-16. PubMed ID: 16701851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the mechanical stability of porous coated press fit titanium implants: a finite element study of a pushout test.
    Helgason B; Viceconti M; Rúnarsson TP; Brynjólfsson S
    J Biomech; 2008; 41(8):1675-81. PubMed ID: 18471819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid bone implants: self-assembly of peptide amphiphile nanofibers within porous titanium.
    Sargeant TD; Guler MO; Oppenheimer SM; Mata A; Satcher RL; Dunand DC; Stupp SI
    Biomaterials; 2008 Jan; 29(2):161-71. PubMed ID: 17936353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone bonding strength of diamond-structured porous titanium-alloy implants manufactured using the electron beam-melting technique.
    Hara D; Nakashima Y; Sato T; Hirata M; Kanazawa M; Kohno Y; Yoshimoto K; Yoshihara Y; Nakamura A; Nakao Y; Iwamoto Y
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():1047-1052. PubMed ID: 26652463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.