BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 17876828)

  • 1. Full correlation analysis of conformational protein dynamics.
    Lange OF; Grubmüller H
    Proteins; 2008 Mar; 70(4):1294-312. PubMed ID: 17876828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalized correlation for biomolecular dynamics.
    Lange OF; Grubmüller H
    Proteins; 2006 Mar; 62(4):1053-61. PubMed ID: 16355416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collective Langevin dynamics of conformational motions in proteins.
    Lange OF; Grubmüller H
    J Chem Phys; 2006 Jun; 124(21):214903. PubMed ID: 16774438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can principal components yield a dimension reduced description of protein dynamics on long time scales?
    Lange OF; Grubmüller H
    J Phys Chem B; 2006 Nov; 110(45):22842-52. PubMed ID: 17092036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local feature analysis: a statistical theory for reproducible essential dynamics of large macromolecules.
    Zhang Z; Wriggers W
    Proteins; 2006 Aug; 64(2):391-403. PubMed ID: 16700056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting coupled collective motions in protein by independent subspace analysis.
    Sakuraba S; Joti Y; Kitao A
    J Chem Phys; 2010 Nov; 133(18):185102. PubMed ID: 21073231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics of large-ring cyclodextrins: principal component analysis of the conformational interconversions.
    Gotsev MG; Ivanov PM
    J Phys Chem B; 2009 Apr; 113(17):5752-9. PubMed ID: 19344106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Projection of Monte Carlo and molecular dynamics trajectories onto the normal mode axes: human lysozyme.
    Horiuchi T; Go N
    Proteins; 1991; 10(2):106-16. PubMed ID: 1896424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: the myoglobin case.
    Papaleo E; Mereghetti P; Fantucci P; Grandori R; De Gioia L
    J Mol Graph Model; 2009; 27(8):889-99. PubMed ID: 19264523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How many atoms are required to characterize accurately trajectory fluctuations of a protein?
    Cukier RI
    J Chem Phys; 2010 Jun; 132(24):245101. PubMed ID: 20590215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harmonicity and anharmonicity in protein dynamics: a normal mode analysis and principal component analysis.
    Hayward S; Kitao A; Go N
    Proteins; 1995 Oct; 23(2):177-86. PubMed ID: 8592699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient characterization of collective motions and interresidue correlations in proteins by low-resolution simulations.
    Bahar I; Erman B; Haliloglu T; Jernigan RL
    Biochemistry; 1997 Nov; 36(44):13512-23. PubMed ID: 9354619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complexity of free energy landscapes of peptides revealed by nonlinear principal component analysis.
    Nguyen PH
    Proteins; 2006 Dec; 65(4):898-913. PubMed ID: 17034036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apo adenylate kinase encodes its holo form: a principal component and varimax analysis.
    Cukier RI
    J Phys Chem B; 2009 Feb; 113(6):1662-72. PubMed ID: 19159290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray diffuse scattering and rigid-body motion in crystalline lysozyme probed by molecular dynamics simulation.
    Héry S; Genest D; Smith JC
    J Mol Biol; 1998 May; 279(1):303-19. PubMed ID: 9636718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of time series analysis on molecular dynamics simulations of proteins: a study of different conformational spaces by principal component analysis.
    Alakent B; Doruker P; Camurdan MC
    J Chem Phys; 2004 Sep; 121(10):4759-69. PubMed ID: 15332910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring multiple timescale motions in protein GB3 using accelerated molecular dynamics and NMR spectroscopy.
    Markwick PR; Bouvignies G; Blackledge M
    J Am Chem Soc; 2007 Apr; 129(15):4724-30. PubMed ID: 17375925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Essential spaces defined by NMR structure ensembles and molecular dynamics simulation show significant overlap.
    Abseher R; Horstink L; Hilbers CW; Nilges M
    Proteins; 1998 Jun; 31(4):370-82. PubMed ID: 9626697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revealing time bunching effect in single-molecule enzyme conformational dynamics.
    Lu HP
    Phys Chem Chem Phys; 2011 Apr; 13(15):6734-49. PubMed ID: 21409227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.