BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 17876828)

  • 21. Conformational states and folding pathways of peptides revealed by principal-independent component analyses.
    Nguyen PH
    Proteins; 2007 May; 67(3):579-92. PubMed ID: 17348012
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solvent effects in the slow dynamics of proteins.
    Hinsen K; Kneller GR
    Proteins; 2008 Mar; 70(4):1235-42. PubMed ID: 17853448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein flexibility from discrete molecular dynamics simulations using quasi-physical potentials.
    Emperador A; Meyer T; Orozco M
    Proteins; 2010 Jan; 78(1):83-94. PubMed ID: 19816993
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conformational and dynamics changes induced by bile acids binding to chicken liver bile acid binding protein.
    Eberini I; Guerini Rocco A; Ientile AR; Baptista AM; Gianazza E; Tomaselli S; Molinari H; Ragona L
    Proteins; 2008 Jun; 71(4):1889-98. PubMed ID: 18175325
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: the case of domain motions.
    Naritomi Y; Fuchigami S
    J Chem Phys; 2011 Feb; 134(6):065101. PubMed ID: 21322734
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Collective motions in proteins investigated by X-ray diffuse scattering.
    Mizuguchi K; Kidera A; Go N
    Proteins; 1994 Jan; 18(1):34-48. PubMed ID: 8146121
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Complex-valued neural networks for nonlinear complex principal component analysis.
    Rattan SS; Hsieh WW
    Neural Netw; 2005 Jan; 18(1):61-9. PubMed ID: 15649662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analyzing large-scale structural change in proteins: comparison of principal component projection and Sammon mapping.
    Mesentean S; Fischer S; Smith JC
    Proteins; 2006 Jul; 64(1):210-8. PubMed ID: 16617427
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conformations of some large-ring cyclodextrins derived from conformational search with molecular dynamics simulations and principal component analysis.
    Ivanov PM
    J Phys Chem B; 2010 Mar; 114(8):2650-9. PubMed ID: 20141116
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Free energy landscape of a biomolecule in dihedral principal component space: sampling convergence and correspondence between structures and minima.
    Maisuradze GG; Leitner DM
    Proteins; 2007 May; 67(3):569-78. PubMed ID: 17348026
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein dynamics from X-ray crystallography: anisotropic, global motion in diffuse scattering patterns.
    Meinhold L; Smith JC
    Proteins; 2007 Mar; 66(4):941-53. PubMed ID: 17154425
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Backbone motions of free and pheromone-bound major urinary protein I studied by molecular dynamics simulation.
    Macek P; Novak P; ZĂ­dek L; Sklenar V
    J Phys Chem B; 2007 May; 111(20):5731-9. PubMed ID: 17465536
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of solvent on collective motions in globular protein.
    Hayward S; Kitao A; Hirata F; Go N
    J Mol Biol; 1993 Dec; 234(4):1207-17. PubMed ID: 7505336
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Geometry-based sampling of conformational transitions in proteins.
    Seeliger D; Haas J; de Groot BL
    Structure; 2007 Nov; 15(11):1482-92. PubMed ID: 17997973
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functionally relevant protein motions: extracting basin-specific collective coordinates from molecular dynamics trajectories.
    Pan PW; Dickson RJ; Gordon HL; Rothstein SM; Tanaka S
    J Chem Phys; 2005 Jan; 122(3):34904. PubMed ID: 15740224
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative structural studies of psychrophilic and mesophilic protein homologues by molecular dynamics simulation.
    Kundu S; Roy D
    J Mol Graph Model; 2009; 27(8):871-80. PubMed ID: 19223214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimating effective degrees of freedom in motor systems.
    Clewley RH; Guckenheimer JM; Valero-Cuevas FJ
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):430-42. PubMed ID: 18269978
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient evaluation of sampling quality of molecular dynamics simulations by clustering of dihedral torsion angles and Sammon mapping.
    Frickenhaus S; Kannan S; Zacharias M
    J Comput Chem; 2009 Feb; 30(3):479-92. PubMed ID: 18680215
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Procrustean rotation in concert with principal component analysis of molecular dynamics trajectories: Quantifying global and local differences between conformational samples.
    Oblinsky DG; Vanschouwen BM; Gordon HL; Rothstein SM
    J Chem Phys; 2009 Dec; 131(22):225102. PubMed ID: 20001084
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of principal component analysis in protein unfolding: an all-atom molecular dynamics simulation study.
    Das A; Mukhopadhyay C
    J Chem Phys; 2007 Oct; 127(16):165103. PubMed ID: 17979396
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.