These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 1787720)

  • 1. Cerebral averaged potentials preceding oral movement.
    Wohlert AB; Larson CR
    J Speech Hear Res; 1991 Dec; 34(6):1387-96. PubMed ID: 1787720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Event-related brain potentials preceding speech and nonspeech oral movements of varying complexity.
    Wohlert AB
    J Speech Hear Res; 1993 Oct; 36(5):897-905. PubMed ID: 8246478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerebral potentials preceding unilateral and simultaneous bilateral finger movements.
    Kristeva R; Keller E; Deecke L; Kornhuber HH
    Electroencephalogr Clin Neurophysiol; 1979 Aug; 47(2):229-38. PubMed ID: 95715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High resolution DC-EEG mapping of the Bereitschaftspotential preceding simple or complex bimanual sequential finger movement.
    Cui RQ; Huter D; Egkher A; Lang W; Lindinger G; Deecke L
    Exp Brain Res; 2000 Sep; 134(1):49-57. PubMed ID: 11026725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric spatiotemporal patterns of event-related desynchronization preceding voluntary sequential finger movements: a high-resolution EEG study.
    Bai O; Mari Z; Vorbach S; Hallett M
    Clin Neurophysiol; 2005 May; 116(5):1213-21. PubMed ID: 15826864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical potentials preceding voluntary movement: evidence for three periods of preparation in man.
    Barrett G; Shibasaki H; Neshige R
    Electroencephalogr Clin Neurophysiol; 1986 Apr; 63(4):327-39. PubMed ID: 2419090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Habituation in a simple repetitive motor task: a study with movement-related cortical potentials.
    Dirnberger G; Duregger C; Lindinger G; Lang W
    Clin Neurophysiol; 2004 Feb; 115(2):378-84. PubMed ID: 14744580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuromagnetic fields preceding unilateral movements in dextrals and sinistrals.
    Taniguchi M; Yoshimine T; Cheyne D; Kato A; Kihara T; Ninomiya H; Hirata M; Hirabuki N; Nakamura H; Hayakawa T
    Neuroreport; 1998 May; 9(7):1497-502. PubMed ID: 9631455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor cortex involvement during verbal versus non-verbal lip and tongue movements.
    Salmelin R; Sams M
    Hum Brain Mapp; 2002 Jun; 16(2):81-91. PubMed ID: 11954058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced negative slope of cortical potentials before sequential as compared with simultaneous extensions of two fingers.
    Kitamura J; Shibasaki H; Takagi A; Nabeshima H; Yamaguchi A
    Electroencephalogr Clin Neurophysiol; 1993 Mar; 86(3):176-82. PubMed ID: 7680993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements.
    Gerloff C; Richard J; Hadley J; Schulman AE; Honda M; Hallett M
    Brain; 1998 Aug; 121 ( Pt 8)():1513-31. PubMed ID: 9712013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical source localization of human movement-related cortical potentials.
    Tarkka IM
    Int J Psychophysiol; 1994 Feb; 16(1):81-8. PubMed ID: 8206807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric activation of motor cortex controlling human anterior digastric muscles during speech and target-directed jaw movements.
    Sowman PF; Flavel SC; McShane CL; Sakuma S; Miles TS; Nordstrom MA
    J Neurophysiol; 2009 Jul; 102(1):159-66. PubMed ID: 19420123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The possibility of left dominant activation of the sensorimotor cortex during lip protrusion in men.
    Fukunaga A; Ohira T; Kamba M; Ogawa S; Akiyama T; Kawase T
    Brain Topogr; 2009 Sep; 22(2):109-18. PubMed ID: 19455411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of distinct motor cortex regions during ipsilateral and contralateral finger movements.
    Cramer SC; Finklestein SP; Schaechter JD; Bush G; Rosen BR
    J Neurophysiol; 1999 Jan; 81(1):383-7. PubMed ID: 9914297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of alteration of effector and side of movement on movement-related cortical potentials.
    Dirnberger G; Kunaver CE; Scholze T; Lindinger G; Lang W
    Clin Neurophysiol; 2002 Feb; 113(2):254-64. PubMed ID: 11856630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Centrifugal regulation of human cortical responses to a task-relevant somatosensory signal triggering voluntary movement.
    Kida T; Wasaka T; Inui K; Akatsuka K; Nakata H; Kakigi R
    Neuroimage; 2006 Sep; 32(3):1355-64. PubMed ID: 16806987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Movement-related potentials accompanying unilateral and bilateral finger movements with different inertial loads.
    Kristeva R; Cheyne D; Lang W; Lindinger G; Deecke L
    Electroencephalogr Clin Neurophysiol; 1990 May; 75(5):410-8. PubMed ID: 1692276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Movement-related potentials recorded from supplementary motor area and primary motor area. Role of supplementary motor area in voluntary movements.
    Ikeda A; Lüders HO; Burgess RC; Shibasaki H
    Brain; 1992 Aug; 115 ( Pt 4)():1017-43. PubMed ID: 1393500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cortical activity predicts good variation in human motor output.
    Babikian S; Kanso E; Kutch JJ
    Exp Brain Res; 2017 Apr; 235(4):1139-1147. PubMed ID: 28161821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.