BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 17877369)

  • 21. Tn5 transposase loops DNA in the absence of Tn5 transposon end sequences.
    Adams CD; Schnurr B; Skoko D; Marko JF; Reznikoff WS
    Mol Microbiol; 2006 Dec; 62(6):1558-68. PubMed ID: 17074070
    [TBL] [Abstract][Full Text] [Related]  

  • 22. IS911 transposition is regulated by protein-protein interactions via a leucine zipper motif.
    Haren L; Normand C; Polard P; Alazard R; Chandler M
    J Mol Biol; 2000 Feb; 296(3):757-68. PubMed ID: 10677279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The N-terminus of Himar1 mariner transposase mediates multiple activities during transposition.
    Butler MG; Chakraborty SA; Lampe DJ
    Genetica; 2006 May; 127(1-3):351-66. PubMed ID: 16850239
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The C-terminus of the Hermes transposase contains a protein multimerization domain.
    Michel K; O'Brochta DA; Atkinson PW
    Insect Biochem Mol Biol; 2003 Oct; 33(10):959-70. PubMed ID: 14505689
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional domains of the IS1 transposase: analysis in vivo and in vitro.
    Ton-Hoang B; Turlan C; Chandler M
    Mol Microbiol; 2004 Sep; 53(5):1529-43. PubMed ID: 15387827
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potential role for the Metnase transposase fusion gene in colon cancer through the regulation of key genes.
    Apostolou P; Toloudi M; Kourtidou E; Mimikakou G; Vlachou I; Chatziioannou M; Kipourou V; Papasotiriou I
    PLoS One; 2014; 9(10):e109741. PubMed ID: 25333365
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The roles of the human SETMAR (Metnase) protein in illegitimate DNA recombination and non-homologous end joining repair.
    Tellier M; Chalmers R
    DNA Repair (Amst); 2019 Aug; 80():26-35. PubMed ID: 31238295
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The human SETMAR protein preserves most of the activities of the ancestral Hsmar1 transposase.
    Liu D; Bischerour J; Siddique A; Buisine N; Bigot Y; Chalmers R
    Mol Cell Biol; 2007 Feb; 27(3):1125-32. PubMed ID: 17130240
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the specific DNA-binding properties of Tnp26, the transposase of insertion sequence IS26.
    Pong CH; Harmer CJ; Flores JK; Ataide SF; Hall RM
    J Biol Chem; 2021 Oct; 297(4):101165. PubMed ID: 34487761
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dissecting Tn5 transposition using HIV-1 integrase diketoacid inhibitors.
    Czyz A; Stillmock KA; Hazuda DJ; Reznikoff WS
    Biochemistry; 2007 Sep; 46(38):10776-89. PubMed ID: 17725323
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural and genome-wide analyses suggest that transposon-derived protein SETMAR alters transcription and splicing.
    Chen Q; Bates AM; Hanquier JN; Simpson E; Rusch DB; Podicheti R; Liu Y; Wek RC; Cornett EM; Georgiadis MM
    J Biol Chem; 2022 May; 298(5):101894. PubMed ID: 35378129
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solution structure of the Mu end DNA-binding ibeta subdomain of phage Mu transposase: modular DNA recognition by two tethered domains.
    Schumacher S; Clubb RT; Cai M; Mizuuchi K; Clore GM; Gronenborn AM
    EMBO J; 1997 Dec; 16(24):7532-41. PubMed ID: 9405381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Arrayed transposase-binding sequences on the ends of transposon Tn5090/Tn402.
    Kamali-Moghaddam M; Sundström L
    Nucleic Acids Res; 2001 Feb; 29(4):1005-11. PubMed ID: 11160934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biochemical Characterization of Kat1: a Domesticated hAT-Transposase that Induces DNA Hairpin Formation and MAT-Switching.
    Chiruvella KK; Rajaei N; Jonna VR; Hofer A; Åström SU
    Sci Rep; 2016 Feb; 6():21671. PubMed ID: 26902909
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nuclear localization of the Hermes transposase depends on basic amino acid residues at the N-terminus of the protein.
    Michel K; Atkinson PW
    J Cell Biochem; 2003 Jul; 89(4):778-90. PubMed ID: 12858343
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mutational analysis of the Mu transposase. Contributions of two distinct regions of domain II to recombination.
    Krementsova E; Giffin MJ; Pincus D; Baker TA
    J Biol Chem; 1998 Nov; 273(47):31358-65. PubMed ID: 9813045
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DNA-binding specificity of rice mariner-like transposases and interactions with Stowaway MITEs.
    Feschotte C; Osterlund MT; Peeler R; Wessler SR
    Nucleic Acids Res; 2005; 33(7):2153-65. PubMed ID: 15831788
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sleeping Beauty transposase modulates cell-cycle progression through interaction with Miz-1.
    Walisko O; Izsvák Z; Szabó K; Kaufman CD; Herold S; Ivics Z
    Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4062-7. PubMed ID: 16537485
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assembly of the mariner Mos1 synaptic complex.
    Augé-Gouillou C; Brillet B; Hamelin MH; Bigot Y
    Mol Cell Biol; 2005 Apr; 25(7):2861-70. PubMed ID: 15767689
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiple oligomerisation domains in the IS911 transposase: a leucine zipper motif is essential for activity.
    Haren L; Polard P; Ton-Hoang B; Chandler M
    J Mol Biol; 1998; 283(1):29-41. PubMed ID: 9761671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.