These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 1787760)

  • 1. Computer simulation of electronic interactions during excitation and repolarisation of myocardial tissue.
    Malik M; Camm AJ
    Med Biol Eng Comput; 1991 Jul; 29(4):425-32. PubMed ID: 1787760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical model of electrotonic interactions during excitation and repolarisation of myocardial tissue.
    Malik M
    Comput Methods Programs Biomed; 1991 Jun; 35(2):111-23. PubMed ID: 1914450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of myocardial electrotonic interaction on the sequence of excitation and repolarisation and on T wave polarity. Computer modelling experiments.
    Malik M; Camm AJ
    Clin Phys Physiol Meas; 1992 Nov; 13(4):365-87. PubMed ID: 1483331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer simulation of myocardial fibrillation using a one dimensional model of excitation and recovery processes.
    Malik M; Camm AJ
    Cardiovasc Res; 1989 Feb; 23(2):132-44. PubMed ID: 2776158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer model of cardiac repolarization processes and of the recovery sequence.
    Malik M; Camm AJ
    Comput Biomed Res; 1989 Apr; 22(2):160-80. PubMed ID: 2721168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of Wenckebach periods: hypothesis based on computer modeling experiments.
    Malik M; Camm AJ
    Am J Physiol; 1989 Oct; 257(4 Pt 2):H1263-74. PubMed ID: 2801985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-Time ECG Simulation for Hybrid Mock Circulatory Loops.
    Korn L; Rüschen D; Zander N; Leonhardt S; Walter M
    Artif Organs; 2018 Feb; 42(2):131-140. PubMed ID: 29023795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction and implementation of QRST-wave simulation model.
    Lü WX; Xu ZY; Fu YJ
    Sci China B; 1992 Nov; 35(11):1331-40. PubMed ID: 1298293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATX-II effects on the apparent location of M cells in a computational model of a human left ventricular wedge.
    Dos Santos RW; Otaviano Campos F; Neumann Ciuffo L; Nygren A; Giles W; Koch H
    J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S86-S95. PubMed ID: 16686688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microcomputer-based cardiac field simulation model.
    Lu W; Xu Z; Fu Y
    Med Biol Eng Comput; 1993 Jul; 31(4):384-7. PubMed ID: 8231301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational modelling of electrocardiograms: repolarisation and T-wave polarity in the human heart.
    Hurtado DE; Kuhl E
    Comput Methods Biomech Biomed Engin; 2014; 17(9):986-96. PubMed ID: 23113842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of transmural electrical heterogeneities and electrotonic interactions on the dispersion of cardiac repolarization and action potential duration: A simulation study.
    Colli Franzone P; Pavarino LF; Taccardi B
    Math Biosci; 2006 Nov; 204(1):132-65. PubMed ID: 16904130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiac electrophysiological experiments in numero, Part III: Simulation of arrhythmias and pacing.
    Malik M; Camm AJ
    Pacing Clin Electrophysiol; 1991 Dec; 14(12):2167-86. PubMed ID: 1723199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiac electrophysiological experiments in numero, Part II: Models of electrophysiological processes.
    Malik M; Camm AJ
    Pacing Clin Electrophysiol; 1991 Nov; 14(11 Pt 1):1648-71. PubMed ID: 1721155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [An efficient method for simulating ventricular electrical activity based on anatomic structure by incorporating AP model].
    Yu DK; Yang Y; Yin BS; Li BF; Nong DB; Zhou X
    Nan Fang Yi Ke Da Xue Xue Bao; 2006 May; 26(5):549-52. PubMed ID: 16762845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological-model-constrained noninvasive reconstruction of volumetric myocardial transmembrane potentials.
    Wang L; Zhang H; Wong KC; Liu H; Shi P
    IEEE Trans Biomed Eng; 2010 Feb; 57(2):296-315. PubMed ID: 19535316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin on the electrocardiogram of U-waves and abnormal U-wave inversion.
    di Bernardo D; Murray A
    Cardiovasc Res; 2002 Jan; 53(1):202-8. PubMed ID: 11744029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computer model of myocardial disarray in simulating ECG features of hypertrophic cardiomyopathy.
    Wei D; Miyamoto N; Mashima S
    Jpn Heart J; 1999 Nov; 40(6):819-26. PubMed ID: 10737565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Some aspects of computer modelling in cardiac electrophysiology.
    Cochrane T; Malik M
    Life Support Syst; 1986; 4(2):159-75. PubMed ID: 3755783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac ischemia-insights from computational models.
    Loewe A; Wülfers EM; Seemann G
    Herzschrittmacherther Elektrophysiol; 2018 Mar; 29(1):48-56. PubMed ID: 29305703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.