BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 17877639)

  • 1. A structural mechanism for maintaining the 'on-state' of the CaMKII memory switch in the post-synaptic density.
    Mullasseril P; Dosemeci A; Lisman JE; Griffith LC
    J Neurochem; 2007 Oct; 103(1):357-64. PubMed ID: 17877639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CaMKII-dependent phosphorylation of NR2A and NR2B is decreased in animals characterized by hippocampal damage and impaired LTP.
    Caputi A; Gardoni F; Cimino M; Pastorino L; Cattabeni F; Di Luca M
    Eur J Neurosci; 1999 Jan; 11(1):141-8. PubMed ID: 9987018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the dynamics of CaMKII-NMDAR complex related to memory formation in synapses: the possible roles of threonine 286 autophosphorylation of CaMKII in long term potentiation.
    He Y; Kulasiri D; Samarasinghe S
    J Theor Biol; 2015 Jan; 365():403-19. PubMed ID: 25446714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The molecular basis of CaMKII function in synaptic and behavioural memory.
    Lisman J; Schulman H; Cline H
    Nat Rev Neurosci; 2002 Mar; 3(3):175-90. PubMed ID: 11994750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly.
    Lisman JE; Zhabotinsky AM
    Neuron; 2001 Aug; 31(2):191-201. PubMed ID: 11502252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CaMKII autophosphorylation is the only enzymatic event required for synaptic memory.
    Chen X; Cai Q; Zhou J; Pleasure SJ; Schulman H; Zhang M; Nicoll RA
    Proc Natl Acad Sci U S A; 2024 Jun; 121(26):e2402783121. PubMed ID: 38889145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. alphaCaMKII autophosphorylation levels differ depending on subcellular localization.
    Davies KD; Alvestad RM; Coultrap SJ; Browning MD
    Brain Res; 2007 Jul; 1158():39-49. PubMed ID: 17559813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic memory and CaMKII.
    Nicoll RA; Schulman H
    Physiol Rev; 2023 Oct; 103(4):2877-2925. PubMed ID: 37290118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic plasticity: a molecular memory switch.
    Lisman JE; McIntyre CC
    Curr Biol; 2001 Oct; 11(19):R788-91. PubMed ID: 11591339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation.
    Zhao D; Watson JB; Xie CW
    J Neurophysiol; 2004 Nov; 92(5):2853-8. PubMed ID: 15212428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ultrasensitive Ca2+/calmodulin-dependent protein kinase II-protein phosphatase 1 switch facilitates specificity in postsynaptic calcium signaling.
    Bradshaw JM; Kubota Y; Meyer T; Schulman H
    Proc Natl Acad Sci U S A; 2003 Sep; 100(18):10512-7. PubMed ID: 12928489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical principles underlying the stable maintenance of LTP by the CaMKII/NMDAR complex.
    Lisman J; Raghavachari S
    Brain Res; 2015 Sep; 1621():51-61. PubMed ID: 25511992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bistability in the Ca(2+)/calmodulin-dependent protein kinase-phosphatase system.
    Zhabotinsky AM
    Biophys J; 2000 Nov; 79(5):2211-21. PubMed ID: 11053103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate localization creates specificity in calcium/calmodulin-dependent protein kinase II signaling at synapses.
    Tsui J; Malenka RC
    J Biol Chem; 2006 May; 281(19):13794-13804. PubMed ID: 16551613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of phosphorylation at the postsynaptic density during different activity states of Ca2+/calmodulin-dependent protein kinase II.
    Dosemeci A; Jaffe H
    Biochem Biophys Res Commun; 2010 Jan; 391(1):78-84. PubMed ID: 19896464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Persistent accumulation of calcium/calmodulin-dependent protein kinase II in dendritic spines after induction of NMDA receptor-dependent chemical long-term potentiation.
    Otmakhov N; Tao-Cheng JH; Carpenter S; Asrican B; Dosemeci A; Reese TS; Lisman J
    J Neurosci; 2004 Oct; 24(42):9324-31. PubMed ID: 15496668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast Decay of CaMKII FRET Sensor Signal in Spines after LTP Induction Is Not Due to Its Dephosphorylation.
    Otmakhov N; Regmi S; Lisman JE
    PLoS One; 2015; 10(6):e0130457. PubMed ID: 26086939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential inactivation of postsynaptic density-associated and soluble Ca2+/calmodulin-dependent protein kinase II by protein phosphatases 1 and 2A.
    Strack S; Barban MA; Wadzinski BE; Colbran RJ
    J Neurochem; 1997 May; 68(5):2119-28. PubMed ID: 9109540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A significant but rather mild contribution of T286 autophosphorylation to Ca2+/CaM-stimulated CaMKII activity.
    Coultrap SJ; Barcomb K; Bayer KU
    PLoS One; 2012; 7(5):e37176. PubMed ID: 22615928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of calcium/calmodulin-dependent protein kinases after traumatic brain injury.
    Atkins CM; Chen S; Alonso OF; Dietrich WD; Hu BR
    J Cereb Blood Flow Metab; 2006 Dec; 26(12):1507-18. PubMed ID: 16570077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.